当前位置:高中试题 > 数学试题 > 函数极值与最值 > 设an是(3-x)n的展开式中x项的系数(n=2、3、4、…),则limn→∞(32a2+33a3+…+3nan)=______....
题目
题型:邢台一模难度:来源:
设an(3-


x
)n
的展开式中x项的系数(n=2、3、4、…),则
lim
n→∞
(
32
a2
+
33
a3
+…+
3n
an
)
=______.
答案
展开式的通项为 Tr+1=(-1)r3n-r
Crn
x
r
2

r
2
=1
得r=2
∴an=3n-2Cn2
3n
an
=
3n
C2n
3n-2
=
2
n(n-1)
=
18
n(n-1)
=18×(
1
n-1
-
1
n
)

lim
n→∞
(
32
a2
+
33
a3
+
34
a4
+…+
3n
an
)

=
lim
n→∞
{18×[(1-
1
2
) +(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n-1
-
1
n
)]
}
=
lim
n→∞
[18×(1-
1
n
)]

=18.
故答案为:18.
核心考点
试题【设an是(3-x)n的展开式中x项的系数(n=2、3、4、…),则limn→∞(32a2+33a3+…+3nan)=______.】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
函数y=f(x)在点(x0,y0)处的切线方程为y=2x+1,则
lim
△x→0
f(x0)-f(x0-2△x)
△x
等于______.
题型:不详难度:| 查看答案
如果过曲线y=x4-x上点P处的切线平行于直线y=3x+2,那么点P的坐标为______.
题型:不详难度:| 查看答案
若以曲线y=f(x)任意一点M(x,y)为切点作切线l,曲线上总存在异于M的点N(x1 y1),以点N为切点作切线l1,且ll1,则称曲线y=f(x)具有“可平行性”.下列曲线具有可平行性的编号为______.(写出所有满足条件的函数的编号)
①y=x3-x    
②y=x+
1
x
   
③y=sina
④y=(x-2)2+lnx.
题型:不详难度:| 查看答案
设函数f(x)=x2+bln(x+1),其中b≠0.
(Ⅰ)当b>
1
2
时,判断函数f(x)在定义域上的单调性;
(Ⅱ)求函数f(x)的极值点;
(Ⅲ)证明对任意的正整数n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
都成立.
题型:山东难度:| 查看答案
已知定义在正实数集上的函数f(x)=
1
2
x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在公共点处的切线相同.
(1)若a=1,求b的值;
(2)用a表示b,并求b的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.