当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知f(x)=ax-ln(-x),x∈(-e,0),g(x)=-ln(-x)x,其中e是自然常数,a∈R.(1)讨论a=-1时,f(x)的单调性、极值;(2)求...
题目
题型:不详难度:来源:
已知f(x)=ax-ln(-x),x∈(-e,0),g(x)=-
ln(-x)
x
,其中e是自然常数,a∈R.
(1)讨论a=-1时,f(x)的单调性、极值;
(2)求证:在(1)的条件下,|f(x)|>g(x)+
1
2

(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.
答案
(1)∵f(x)=-x-ln(-x)f′(x)=-1-
1
x
=-
x+1
x

∴当-e≤x<-1时,f′(x)<0,此时f(x)为单调递减
当-1<x<0时,f"(x)>0,此时f(x)为单调递增
∴f(x)的极小值为f(-1)=1
(2)∵f(x)的极小值,即f(x)在[-e,0)的最小值为1
∴|f(x)|min=1
h(x)=g(x)+
1
2
=-
ln(-x)
x
+
1
2

又∵h′(x)=
ln(-x)-1
x2

当-e≤x<0时h′(x)≤0,h(x)在[-e,0)上单调递减
h(x)max=h(-e)=
1
e
+
1
2
1
2
+
1
2
=1=|f(x)|min

∴当x∈[-e,0)时,|f(x)|>g(x)+
1
2

(3)假设存在实数a,使f(x)=ax-ln(-x)有最小值3,x∈[-e,0)f′(x)=a-
1
x

①当a≥-
1
e
时,由于x∈[-e,0),则f′(x)=a-
1
x
≥0

∴函数f(x)=ax-ln(-x)是[-e,0)上的增函数
∴f(x)min=f(-e)=-ae-1=3
解得a=-
4
e
<-
1
e
(舍去)
②当a<-
1
e
时,则当-e≤x<
1
a
时,f′(x)=a-
1
x
<0

此时f(x)=ax-ln(-x)是减函数
1
a
<x<0
时,f′(x)=a-
1
x
>0
,此时f(x)=ax-ln(-x)是增函数
f(x)min=f(
1
a
)=1-ln(-
1
a
)=3

解得a=-e2
核心考点
试题【已知f(x)=ax-ln(-x),x∈(-e,0),g(x)=-ln(-x)x,其中e是自然常数,a∈R.(1)讨论a=-1时,f(x)的单调性、极值;(2)求】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
若不等式x+2


2xy
≤a(x+y)对一切正数x、y恒成立,则正数a的最小值为(  )
A.1B.2C.


2
+
1
2
D.2


2
+1
题型:不详难度:| 查看答案
已知函数f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0)
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(II)若a=2,b=1,若函数k=g(x)-2f(x)-x2在[1,3]上恰有两个不同零点,求实数k的取值范围;
(III)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
曲线y=x3+2x2-2x-1在点x=1处的切线方程是(  )
A.y=5x-1B.y=5x-5C.y=3x-3D.y=x-1
题型:不详难度:| 查看答案
如图为函数f(x)=


x
(0<x<1)的图象,其在点M(t,f(t))处的切线为l,l与y轴和直线y=1分别交于点P、Q,点N(0,1),若△PQN的面积为b时的点M恰好有两个,则b的取值范围为______.
题型:不详难度:| 查看答案
已知向量


a
=(x,-1),


b
=(1,lnx),则f(x)=


a


b
的极小值为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.