当前位置:高中试题 > 数学试题 > 函数极值与最值 > (本小题12分)已知函数f(x)=ax3+x2-2x+c,过点,且在(-2,1)内单调递减,在[1,上单调递增。(1)证明sinθ=1,并求f(x)的解析式。(...
题目
题型:不详难度:来源:
(本小题12分)已知函数f(x)=ax3x2-2x+c,过点,且在(-2,1)内单调递减,在[1,上单调递增。
(1)证明sinθ=1,并求f(x)的解析式。
(2)若对于任意的x1x2∈[mm+3](m≥0),不等式|f(x1)-f(x2)|≤恒成立。试问这样的m是否存在,若存在,请求出m的范围,若不存在,说明理由。
(3)已知数列{an}中,a1an+1f(an),求证:an+1>8·lnann∈N*)。
答案
(1)f(x)=即为所求,(2)存在m且m∈[0,1]合乎题意(3)同解析。
解析
解:(1)∵(x)=3ax2+sinθx-2
由题设可知:∴sinθ=1。(2分)
从而a=,∴f(x)=,而又由f(1)=得,c=
∴f(x)=即为所求。                            (4分)
(2)(x)=x2+x-2=(x+2)(x-1)易知f(x)在(-∞,-2)及(1,+∞)上均为增函数,在(-2,1)上为减函数。
(i)当m>1时,f(x)在[m,m+3]上递增。故f(x)max=f(m+3),f(x)min=f(m)
由f(m+3)-f(m)=(m+3)3+(m+3)2-2(m+3)-=3m2+12m+得-5≤m≤1。这与条件矛盾故舍。                                       (6分)
(ii)当0≤m≤1时,f(x)在[m,1]上递减,在[1,m+3]上递增。
∴f(x)min=f(1),f(x)max={f(m),f(m+3)}max
又f(m+3)-f(m)=3m2+12m+=3(m+2)2->0(0≤m≤1),∴f(x)max=f(m+3)
∴|f(x1)-f(x2)| ≤f(x)max-f(x)min="f(m+3)-f(1)" ≤f(4)-f(1)=恒成立
故当0≤m≤1原式恒成立。                                           (8分)
综上:存在m且m∈[0,1]合乎题意。                              (9分)
(3)∵a1∈(0,1,∴a2,故a2>2
假设n=k(k≥2,k∈N*)时,ak>2。则ak+1=f(ak)>f(2)=8>2
故对于一切n(n≥2,n∈N*)均有an>2成立。                      (11分)
令g(x)=
=
当x∈(0,2)时(x)<0,x∈(2,+∞)时,(x)>0,
∴g(x)在x∈[2,+∞时为增函数。
而g(2)=8-8ln2>0,即当x∈[2,+∞时,g(x)≥g(2)>0恒成立。
∴g(an)>0,(n≥2)也恒成立。即:an+1>8lnan(n≥2)恒成立。
而当n=1时,a2=8,而8lna1≤0,∴a2>8lna1显然成立。
综上:对一切n∈N*均有an+1>8lnan成立。               
核心考点
试题【(本小题12分)已知函数f(x)=ax3+x2-2x+c,过点,且在(-2,1)内单调递减,在[1,上单调递增。(1)证明sinθ=1,并求f(x)的解析式。(】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
(本小题满分12分)
设函数时取得极值,
(1)求的值;
(2)若对任意的,都有成立,求c的取值范围.
题型:不详难度:| 查看答案
函数,已知时取得极值,则=
A.4B.3C.5D.2

题型:不详难度:| 查看答案
(本题满分12分)
已知函数时都取得极值
(I)求a、b的值与函数的单调区间;
(II)若对的取值范围。
题型:不详难度:| 查看答案
(本小题满分12分)
已知函数f(x)=x2(x-3a)+1(a>0,x∈R).
(I)求函数yf(x)的极值;
(II)函数yf(x)在(0,2)上单调递减,求实数a的取值范围;
(III)若在区间(0,+∞)上存在实数x0,使得不等式f(x0)-4a3≤0能成立,求实数a的取值范围.
题型:不详难度:| 查看答案
(本小题满分13分)
设函数的图象与y轴的交点为点P,且曲线在点P处的切线方程为处取得极值0,试求函数的单调区间。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.