当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=ex-kx,x∈R。(1)若k=e,试确定函数f(x)的单调区间;(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值...
题目
题型:福建省高考真题难度:来源:
已知函数f(x)=ex-kx,x∈R。
(1)若k=e,试确定函数f(x)的单调区间;
(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围;
(3)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>(n∈N*)。
答案

解:(1)由
所以

故f(x)的单调递增区间是

故f(x)的单调递减区间是
(2)由可知是偶函数
于是对任意成立等价于对任意成立

①当时,
此时上单调递增
,符合题意
②当时,
当x变化时的变化情况如下表:

由此可得,在上,
依题意


综合①,②得,实数k的取值范围是
(3)∵



由此得

核心考点
试题【已知函数f(x)=ex-kx,x∈R。(1)若k=e,试确定函数f(x)的单调区间;(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数f(x)=x2-cosx,对于上的任意x1,x2,有如下条件:
①x1>x2;②x12>x22;③|x1|>x2
其中能使f(x1)>f(x2)恒成立的条件序号是(    )。
题型:北京高考真题难度:| 查看答案

已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R,
(Ⅰ)当a=时,讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)仅在x=0处有极值,求a的取值范围;
(Ⅲ)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范围.

题型:天津高考真题难度:| 查看答案
设函数f(x)=x3+ax2-a2x+1,g(x)=ax2-2x+1,其中实数a≠0。
(1)若a>0,求函数f(x)的单调区间;
(2)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最小值时,记g(x)的最小值为h(a),求h(a)的值域;
(3)若f(x)与g(x)在区间(a,a+2)内均为增函数,求a的取值范围。
题型:陕西省高考真题难度:| 查看答案
已知a是实数,函数f(x)=(x-a),
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(a)为f(x)在区间[0,2]上的最小值,
(ⅰ)写出g(a)的表达式;
(ⅱ)求a的取值范围,使得-6≤g(a)≤-2。
题型:浙江省高考真题难度:| 查看答案
设函数f(x)=ax3+bx2-3a2x+1(a、b∈R)在x=x1,x=x2处取得极值,且|x1-x2|=2,
(Ⅰ)若a=1,求b的值,并求f(x)的单调区间;
(Ⅱ)若a>0,求b的取值范围。
题型:辽宁省高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.