当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=x3+ax2+x+1,a∈R (1)讨论函数f(x)的单调区间; (2)设函数f(x)在区间内是减函数,求a的取值范围。...
题目
题型:同步题难度:来源:
已知函数f(x)=x3+ax2+x+1,a∈R
 (1)讨论函数f(x)的单调区间;
 (2)设函数f(x)在区间内是减函数,求a的取值范围。
答案
解:(1)f′(x)=3x2+2ax+1,判别式△=4(a2-3)
(i)若,则在
上f′(x)>0,f(x)是增函数
内f′(x)<0,f(x)是减函数
上f′(x)>0,f(x)是增函数
(ii)若,则对所有x∈R都有f′(x)>0
故此时f(x)在R上是增函数
(iii)若,则
且对所有的都有f′(x)>0
故当时,f(x)在R上是增函数。
(2)由(1)知,只有当
f(x)在内是减函数
因此  ①
  ②
时,由①、②解得a≥2。
核心考点
试题【已知函数f(x)=x3+ax2+x+1,a∈R (1)讨论函数f(x)的单调区间; (2)设函数f(x)在区间内是减函数,求a的取值范围。】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
设函数f(x)=x2ex-1+ax3+bx2,已知x=-2和x=1为f(x)的极值点。
(1)求a和b的值;
(2)讨论f(x)的单调性;
(3)设 g(x)=x3-x2,试比较f(x)与g(x)的大小。
题型:同步题难度:| 查看答案
设函数f(x)=(x>0且x≠1)。
(1)求函数f(x)的单调区间;
(2)已知>xa对任意x∈(0,1)成立,求实数a的取值范围.
题型:同步题难度:| 查看答案
已知函数f(x)=ln(1+x)-x+x2(k≥0)。
(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)的单调区间。
题型:同步题难度:| 查看答案
函数f(x)= 

[     ]

A.在(0,2)上单调递减
B.在(-∞,1)和(2,+∞)上单调递增
C.在(0,2)上单调递增
D.在(-∞,0)和(2,+∞)上单调递减
题型:同步题难度:| 查看答案
已知函数f(x)=x3+ax2+bx+c在x =-1与x=2处都取得极值。
(1)求a,b的值及函数f(x)的单调区间;
(2)若对x∈[-2,3],不等式f(x)+c<c2恒成立,求c的取值范围。
题型:同步题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.