当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 设,g(x)=ax+5﹣2a(a>0).(1)求f(x)在x∈[0,1]上的值域;(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(...
题目
题型:江西省月考题难度:来源:
,g(x)=ax+5﹣2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
答案
解:(1)在x∈[0,1]上恒成立.
∴f(x)在[0,1]上增,
∴f(x)值域[0,1].
(2)f(x)值域[0,1],
g(x)=ax+5﹣2a(a>0)在x∈[0,1]上的值域[5﹣2a,5﹣a].
由条件,只须[0,1][5﹣2a,5﹣a].
核心考点
试题【设,g(x)=ax+5﹣2a(a>0).(1)求f(x)在x∈[0,1]上的值域;(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
定义在R上的函数f(x)满足f(4)=1,f"(x)为f(x)的导函数,已知y=f"(x)的图象如图所示,若两个正数a,b满足的取值范围是
[     ]
A.
B.
C.
D.(﹣∞,3)
题型:宁夏自治区期末题难度:| 查看答案
设函数f(x)=x3+ax2﹣9x﹣1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:
(Ⅰ)a的值;
(Ⅱ)函数f(x)的单调区间.
题型:山东省月考题难度:| 查看答案
已知函数,且.(e是自然对数的底数)
(1)求a与b的关系式;
(2)若f(x)在其定义域内为单调函数,求a的取值范围.
题型:江西省月考题难度:| 查看答案
已知函数满足对任意的实数x1≠x2都有成立,则实数a的取值范围为[     ]
A.(﹣∞,2)
B.
C.(﹣∞,2]
D.
题型:湖南省月考题难度:| 查看答案
已知函数f(x)= ,g(x)=alnx,a∈R.
(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2)设函数h(x)=f(x)﹣g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;
(3)对(2)中的φ(a),证明:当a∈(0,+∞)时,φ(a)≤1.
题型:湖南省月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.