当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 若函数f(x)对任意的实数x1,x2∈D,均有|f(x2-f(x1))|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”.下列函数是实数集R上的“平缓...
题目
题型:不详难度:来源:
若函数f(x)对任意的实数x1,x2∈D,均有|f(x2-f(x1))|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”.下列函数是实数集R上的“平缓函数”的是(  )
A.f(x)=cosxB.f(x)=x2-xC.f(x)=(
1
2
x
D.f(x)=3x-2
答案
f(x)=cosx是R上的“平缓函数,f(x)=x2-x,f(x)=(
1
2
)x
,f(x)=3x-2不是区间R的“平缓函数”;
对于选项A,设φ(x)=x-cosx,则φ"(x)=1+sinx≥0,则φ(x)=x-cosx是实数集R上的增函数,
不妨设x1<x2,则φ(x1)<φ(x2),即x1-cosx1<x2-cosx2
则cosx2-cosx1<x2-x1
又y=x+cosx也是R上的增函数,则x1+cosx1<x2+cosx2
即cosx2-cosx1>x1-x2
由①、②得-(x2-x1)<cosx2-cosx1<x2-x1
因此|cosx2-cosx1|<|x2-x1|,对x1<x2的实数都成立,
当x1>x2时,同理有|cosx2-cosx1|<|x2-x1|成立
又当x1=x2时,等式|cosx2-cosx1|=|x2-x1|=0,
故对任意的实数x1,x2∈R,均有|cosx2-cosx1|≤|x2-x1|
因此 sinx是R上的“平缓函数;
对于选项B,由于|f(x1)-f(x2)|=|(x1-x2)(x1+x2-1)|
取x1=3,x2=1,则|f(x1)-f(x2)|=4>|x1-x2|,
因此,f(x)=x2-x不是区间R的“平缓函数”;
对于选项C,由于|f(x1)-f(x2)|=|(
1
2
)x1-(
1
2
)x2
|
取x1=-3,x2=-2,则|f(x1)-f(x2)|=4>|x1-x2|,
因此,f(x)=(
1
2
)x
不是区间R的“平缓函数”;
对于选项D,由于|f(x1)-f(x2)|=|3(x1-x2)|
取x1=3,x2=1,则|f(x1)-f(x2)|=6>|x1-x2|,
因此,f(x)=3x-2不是区间R的“平缓函数”.
故选A.
核心考点
试题【若函数f(x)对任意的实数x1,x2∈D,均有|f(x2-f(x1))|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”.下列函数是实数集R上的“平缓】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围(  )
A.k≤-3或-1≤k≤1或k≥3B.-3<k<-1或1<k<3
C.-2<k<2D.不存在这样的实数k
题型:不详难度:| 查看答案
已知a为实数,f(x)=(x2-4)(x-a).
(I)若f′(-1)=0,求f(x)在[-4,4]上的最大值和最小值;
(II)若f(x)在(-∞,-2)和[2,+∞)上都是递增的,求a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=ax3-4x+4(a∈R)在x=2取得极值.
(Ⅰ)确定a的值并求函数的单调区间;
(Ⅱ)若关于x的方程f(x)=b至多有两个零点,求实数b的取值范围.
题型:不详难度:| 查看答案
f(x)=-
1
2
x2+bln(x+2)在(-1,+∞)
上是减函数,则b的取值范围是(  )
A.[-1,+∞)B.(-1,+∞)C.(-∞,-1]D.(-∞,-1)
题型:湖北难度:| 查看答案
已知函数f(x)=alnx-ax-3(a∈R,a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为
π
4
,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[
m
2
+f′(x)]
在区间[t,3]上总存在极值?
(Ⅲ)当a=2时,设函数h(x)=(p-2)x-
p+2e
x
-3
,若在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.