当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=lnx,g(x)=a(x2-x)(a≠0,a∈R),h(x)=f(x)-g(x)(Ⅰ)若a=1,求函数h(x)的极值;(Ⅱ)若函数y=h (x...
题目
题型:惠州模拟难度:来源:
已知函数f(x)=lnx,g(x)=a(x2-x)(a≠0,a∈R),h(x)=f(x)-g(x)
(Ⅰ)若a=1,求函数h(x)的极值;
(Ⅱ)若函数y=h (x)在(1,+∞)上单调递增,求实数a的取值范围;
(Ⅲ)在函数:y=f(x)的图象上是否存在不同的两点A(x1,y1),B(x2,y2),使线段AB的中点的横坐标x0与直线AB的斜率k之间满足k=f′(x0)?若存在,求出x0;若不存在,请说明理由.
答案
(Ⅰ)由f(x)=lnx,g(x)=a(x2-x)(a≠0,a∈R),
得:h(x)=f(x)-g(x)=lnx-ax2+ax,
当a=1时,h(x)=lnx-x2+x.
h(x)=
1
x
-2x+1
=-
(2x+1)(x-1)
x

∵函数h(x)的定义域为(0,+∞),且当x∈(0,1)时,h′(x)>0,h(x)在(0,1)上单调递增,
当x∈(1,+∞)时,h′(x)<0,h(x)在(1,+∞)上单调递减,
∴h(x)有极大值h(1)=0,无极小值;
(Ⅱ)h(x)=f(x)-g(x)=lnx-ax2+ax,
h(x)=
1
x
-a(2x-1)

∵函数y=h(x)在(1,+∞)上单调递增,则h(x)=
1
x
-a(2x-1)
≥0对x>1恒成立.
a≤
1
x
2x-1
=
1
x(2x-1)
=
1
2x2-x
对x>1恒成立.
∵x>1时,2x2-x>1,∴
1
2x2-x
>0
,又a≠0,∴a<0.
则a的取值范围是(-∞,0).
(Ⅲ)假设存在,不妨设0<x1<x2
k=
f(x1)-f(x2)
x1-x2
=
lnx1-lnx2
x1-x2
=
ln
x1
x2
x1-x2

f(x0)=
1
x0
=
2
x1+x2

由k=f′(x0)⇒
ln
x1
x2
x1-x2
=
2
x1+x2

ln
x1
x2
=
2(x1-x2)
x1+x2
=
2(
x1
x2
-1)
x1
x2
+1

令t=
x1
x2
,u(t)=lnt-
2t-2
t+1
 (0<t<1),则u(t)=
(t-1)2
t(t+1)2
>0

∴u(t)在(0,1)上单调递增,∴u(t)<u(1)=0,
lnt<
2t-2
t+1
,即ln
x1
x2
2(
x1
x2
-1)
x1
x2
+1

故k≠f′(x0).
所以不存在符合题意的两点.
核心考点
试题【已知函数f(x)=lnx,g(x)=a(x2-x)(a≠0,a∈R),h(x)=f(x)-g(x)(Ⅰ)若a=1,求函数h(x)的极值;(Ⅱ)若函数y=h (x】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
函数y=-x3+3x2+3的单调增区间是______.
题型:不详难度:| 查看答案
设a∈R,函数f(x)=ax3-3x2
(Ⅰ)若x=2是函数y=f(x)的极值点,求a的值;
(Ⅱ)若函数g(x)=f(x)+f"(x),x∈[0,2],在x=0处取得最大值,求a的取值范围.
题型:不详难度:| 查看答案
已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)g′(x)>f′(x)g(x),且f(x)=axg(x)(a>0且a≠1,
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,对于有穷数列
f(n)
g(n)
=(n=1,2,…0)
,任取正整数k(1≤k≤10),则前k项和大于
15 
16
的概率是(  )
A.
3
10
B.
2
5
C.
1
2
D.
3
5
题型:不详难度:| 查看答案
已知函数f(x)=ax2+lnx,f1(x)=
1
6
x2+
4
3
x+
5
9
lnx,f2(x)=
1
2
x2+2ax,a∈R

(1)求证:函数f(x)在点(e,f(e))处的切线横过定点,并求出定点的坐标;
(2)若f(x)<f2(x)在区间(1,+∞)上恒成立,求a的取值范围;
(3)当a=
2
3
时,求证:在区间(1,+∞)上,满足f1(x)<g(x)<f2(x)恒成立的函数g(x)有无穷多个.
题型:江苏二模难度:| 查看答案
已知f(x)=x3-ax2-3x
(1)若f(x)在[2,+∞)上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在[1,a]上的最小值和最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.