当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=x3+ax2+bx+c在x=-2处取得极值,并且它的图象与直线y=-3x+3在点(1,0)处相切,(1)求f(x)的解析式;  (2)求f(x...
题目
题型:不详难度:来源:
已知函数f(x)=x3+ax2+bx+c在x=-2处取得极值,并且它的图象与直线y=-3x+3在点(1,0)处相切,
(1)求f(x)的解析式;  
(2)求f(x)的单调区间.
答案
(1)∵f′(x)=3x2+2ax+b,
∴f′(-2)=3×(-2)2+2a×(-2)+b=0
∴12-4a+b=0   ①又f′(1)=3+2a+b=-3  ②,由①②解得a=1,b=-8
又f(x)过点(1,0),
∴13+a×12+b×1+c=0,∴c=6
所以f(x)的解析式为:f(x)=x3+x2-8x+6
(2)由(1)知:f(x)=x3+x2-8x+6,所以f′(x)=3x2+2x-8
令3x2+2x-8<0解得-2<x<
4
3
,令3x2+2x-8>0解得x<-2,或x>
4
3

故f(x)的单调递增区间为(-∞,-2)和(
4
3
,+∞),
f(x)的单调递减区间为(-2,
4
3
核心考点
试题【已知函数f(x)=x3+ax2+bx+c在x=-2处取得极值,并且它的图象与直线y=-3x+3在点(1,0)处相切,(1)求f(x)的解析式;  (2)求f(x】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
设m为实数,函数f(x)=2x2+(x-m)|x-m|,h(x)=





f(x)
x
(x≠0)
0(x=0)

(1)若f(1)≥4,求m的取值范围;(2)当m>0时,求证h(x)在[m,+∞]上是单调递增函数;
(3)若h(x)对于一切x∈[1,2],不等式h(x)≥1恒成立,求实数m的取值范围.
题型:江苏模拟难度:| 查看答案
已知函数f(x)=
1
3
x3+ax+b,(a,b∈R)在x=2处取得极小值-
4
3
.求a+b的值.
题型:不详难度:| 查看答案
已知函数f(x)=x2-alnx(a∈R).
(1)当a=-1时,求函数f(x)在点x=1处的切线方程及f(x)的单调区间;
(2)求函数f(x)的极值.
题型:不详难度:| 查看答案
设函数f(x)=
ax
x2+b
(a>0)

(1)若函数f(x)在x=-1处取得极值-2,求a,b的值.
(2)若函数f(x)在区间(-1,1)内单调递增,求b的取值范围.
题型:芜湖二模难度:| 查看答案
函数f(x)=2x-ln(1-x)的递增区间是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.