当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知向量i=(1,0),j=(0,1),函数f(x)=ax3+bx2+c(a≠0)的图象在y轴上的截距为1,在x=2处切线的方向向量为(a-c)i-12bj,并...
题目
题型:不详难度:来源:
已知向量i=(1,0),j=(0,1),函数f(x)=ax3+bx2+c(a≠0)的图象在y轴上的截距为1,在x=2处切线的方向向量为(a-c)i-12bj,并且函数当x=1时取得极值.
(1)求f(x)的解析式;
(2)求f(x)的单调递增区间;
(3)求f(x)的极值.
答案
(1)f(0)=1,c=1∴f′(x)=3ax2+2bx





f(1)=0
f(2)=
-12b
a-1





a=4
b=-6
,∴f(x)=4x3-6x2+1
(2)f′(x)=12x2-12x=12x(x-1)>0,∴f(x)的单调递增区间为(1,+∞)和(-∞,0).
(3)由(2)知,f(x)的单调递增区间为(1,+∞)和(-∞,0),由f′(x)<0得单调递减区间为(0,1),∴x=0时,函数取极大值f(0)=1,x=1时,函数取极小值(1)=-1
核心考点
试题【已知向量i=(1,0),j=(0,1),函数f(x)=ax3+bx2+c(a≠0)的图象在y轴上的截距为1,在x=2处切线的方向向量为(a-c)i-12bj,并】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数f(x)=x3-3x2-9x.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求f(x)在区间[-2,2]上的最值.
题型:不详难度:| 查看答案
函数y=xln(-x)-1的单调减区间是______.
题型:不详难度:| 查看答案
设a为大于0的常数,函数f(x)=


x
-ln(x+a).
(1)当a=
3
4
,求函数f(x)的极大值和极小值;
(2)若使函数f(x)为增函数,求a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=2ax-x3,x∈(0,1],a>0,若f(x)在(0,1]上单调递增,则实数a的取值范围是______.
题型:不详难度:| 查看答案
设a>0,函数f(x)=x-a


x2+1
+a

(I)若f(x)在区间(0,1]上是增函数,求a的取值范围;
(Ⅱ)求f(x)在区间(0,1]上的最大值.
题型:西城区二模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.