当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=(x-k)2exk.(Ⅰ)求f(x)的单调区间;(Ⅱ)若对于任意的x∈(0,+∞),都有f(x)≤1e,求k的取值范围....
题目
题型:北京难度:来源:
已知函数f(x)=(x-k)2e
x
k

(Ⅰ)求f(x)的单调区间;
(Ⅱ)若对于任意的x∈(0,+∞),都有f(x)≤
1
e
,求k的取值范围.
答案
(Ⅰ)f′(x)=2(x-k) e
x
k
+
1
k
(x-k)2e
x
k
=
1
k
(x2-k2)e
x
k

令f′(x)=0,得x=±k
当k>0时,f′(x)f(x)随x的变化情况如下:
解析
核心考点
试题【已知函数f(x)=(x-k)2exk.(Ⅰ)求f(x)的单调区间;(Ⅱ)若对于任意的x∈(0,+∞),都有f(x)≤1e,求k的取值范围.】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x(-,-k)-k(-k,k)k(k,+)
f′(x)+0-0+
F(x)4k2e-10
x(-,-k)-k(k,-k)-k(-k,+)
f′(x)-0+0-
F(x)04k2e-1
若函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,则a+b=______.
函数f(x)=
lnx
x
的单调递增区间是______.
数列{an}(n∈N*)中,a1=a,an+1是函数fn(x)=
1
3
x3-
1
2
(3an+n2)x2+3n2anx
的极小值点.若数列{an}是等比数列,则a的取值范围是______
已知f(x)=ax-lnx,x∈(0,e)其中e是自然常数,a∈R.
(1)讨论a=1时,f(x)的单调性、极值;
(2)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.
已知函数f(x)=(x2-a)ex
(I)若a=3,求f(x)的单调区间;
(II)已知x1,x2是f(x)的两个不同的极值点,且|x1+x2|≥|x1x2|,若3f(a)<a3+
3
2
a2-3a+b
恒成立,求实数b的取值范围.