当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=a(x-1)2+lnx+1.(Ⅰ)当a=-14时,求函数f(x)的极值;(Ⅱ)若函数f(x)在区间[2,4]上是减函数,求实数a的取值范围;(...
题目
题型:资阳一模难度:来源:
已知函数f(x)=a(x-1)2+lnx+1.
(Ⅰ)当a=-
1
4
时,求函数f(x)的极值;
(Ⅱ)若函数f(x)在区间[2,4]上是减函数,求实数a的取值范围;
(Ⅲ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在





x≥1
y-x≤0
所表示的平面区域内,求实数a的取值范围.
答案
(Ⅰ)当a=-
1
4
时,f(x)=-
1
4
(x-1)2+lnx+1=-
1
4
x2+
1
2
x+lnx+
3
4
(x>0),
所以f′(x)=-
1
2
x+
1
x
+
1
2
=-
(x-2)(x+1)
2x
(x>0),
由f"(x)>0解得0<x<2;由f"(x)<0解得x>2,
故当0<x<2时,f(x)的单调递增;当x>2时,f(x)单调递减,
∴当x=2时,函数f(x)取得极大值f(2)=
3
4
+ln2
.(4分)
(Ⅱ)f′(x)=2a(x-1)+
1
x
,∵函数f(x)在区间[2,4]上单调递减,
∴导数f′(x)=2a(x-1)+
1
x
≤0
在区间[2,4]上恒成立,
2a≤
1
-x2+x
在[2,4]上恒成立,只需2a不大于
1
-x2+x
在[2,4]上的最小值即可.(6分)
1
-x2+x
=
1
-(x-
1
2
)
2
+
1
4
(2≤x≤4),则当2≤x≤4时,
1
-x2+x
∈[-
1
2
,-
1
12
]

2a≤-
1
2
,即a≤-
1
4
,故实数a的取值范围是(-∞,-
1
4
]
.(8分)
(Ⅲ)因f(x)图象上的点在





x≥1
y-x≤0
所表示的平面区域内,
即当x∈[1,+∞)时,不等式f(x)≤x恒成立,即a(x-1)2+lnx-x+1≤0恒成立,
设g(x)=a(x-1)2+lnx-x+1(x≥1),只需g(x)max≤0即可.(9分)
g′(x)=2a(x-1)+
1
x
-1
=
2ax2-(2a+1)x+1
x

(ⅰ)当a=0时,g′(x)=
1-x
x
,当x>1时,g"(x)<0,函数g(x)在(1,+∞)上单调递减,故g(x)≤g(1)=0成立.(10分)
(ⅱ)当a>0时,由g′(x)=
2ax2-(2a+1)x+1
x
=
2a(x-1)(x-
1
2a
)
x
,令g"(x)=0,得x1=1或x2=
1
2a

①若
1
2a
<1
,即a>
1
2
时,在区间(1,+∞)上,g"(x)>0,函数g(x)在(1,+∞)上单调递增,函数g(x)在[1,+∞)上无最大值,不满足条件;
②若
1
2a
≥1
,即0<a≤
1
2
时,函数g(x)在(1,
1
2a
)
上单调递减,在区间(
1
2a
,+∞)
上单调递增,同样g(x)在[1,+∞)上无最大值,不满足条件.(12分)
(ⅲ)当a<0时,由g′(x)=
2a(x-1)(x-
1
2a
)
x
,因x∈(1,+∞),故g"(x)<0,则函数g(x)在(1,+∞)上单调递减,故g(x)≤g(1)=0成立.
综上所述,实数a的取值范围是(-∞,0].(14分)
核心考点
试题【已知函数f(x)=a(x-1)2+lnx+1.(Ⅰ)当a=-14时,求函数f(x)的极值;(Ⅱ)若函数f(x)在区间[2,4]上是减函数,求实数a的取值范围;(】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数f(x)=(ax2+bx+c)ex且f(0)=1,f(1)=0.
(I)若f(x)在区间[0,1]上单调递减,求实数a的取值范围;
(II)当a=0时,是否存在实数m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由.
题型:泰安一模难度:| 查看答案
已知函数f(x)=lnx+ax2+bx(其中a,b)为常数且a≠0)在x=1处取得极值.
(I) 当a=1时,求f(x)的单调区间;
(II) 若f(x)在(0,e]上的最大值为1,求a的值.
题型:海淀区一模难度:| 查看答案
已知函数f(x)=alnx+
a+1
2
x2+1

(Ⅰ)当a=-
1
2
时,求f(x)在区间[
1
e
,e]
上的最值;
(Ⅱ)讨论函数f(x)的单调性.
题型:自贡一模难度:| 查看答案
已知函数f(x)=x2-ax-aln(x-1)(a∈R)
(1)当a=1时,求函数f(x)的最值;
(2)求函数f(x)的单调区间.
题型:不详难度:| 查看答案
设函数f(x)=xlnx(x>0).
(1)求函数f(x)的最小值;
(2)设F(x)=ax2+f′(x)(a∈R),讨论函数F(x)的单调性.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.