当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=(x2-3x+3)•ex,其定义域为[-2,t](t>-2).(1)试确定t的范围,使得函数f(x)在区间[-2,t]上为增函数;(2)求证:...
题目
题型:不详难度:来源:
已知函数f(x)=(x2-3x+3)•ex,其定义域为[-2,t](t>-2).
(1)试确定t的范围,使得函数f(x)在区间[-2,t]上为增函数;
(2)求证:f(t)>f(-2);
(3)求证:对任意t>-2,总有x0∈(-2,t)满足
f′(x0)
ex0
=
2
3
(t-1)2
,并确定这样的x0的个数.
答案
(1)因为f′(x)=(2x-3)ex+(x2-3x+3)ex
由f′(x)>0⇒x>1或x<0,
由f′(x)<0⇒0<x<1,
∴函数f(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,
∵函数f(x)在[-2,t]上为单调函数,
∴-2<t≤0,
(2)证:因为函数f(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,
所以f(x)在x=1处取得极小值e,
又f(-2)=13e-2<e,
所以f(x)在[2,+∞)上的最小值为f(-2),
从而当t>-2时,f(-2)<f(t),
(3)证:因为
f′(x0)
ex0
=x02-x0
f′(x0)
ex0
=
2
3
(t-1)2

即为x02-x0=
2
3
(t-1)2

令g(x)=x2-x-
2
3
(t-1)2

从而问题转化为证明方程g(x)=x2-x-
2
3
(t-1)2
=0在(-2,t)上有解并讨论解的个数,
因为g(-2)=6-
2
3
(t-1)2
=-
2
3
(t-4)(t+2)

g(t)=t(t-1)-
2
3
(t-1)2
=
1
3
(t+2)(t-1)

所以当t>4或-2<t<1时,g(-2)•g(t)<0,
所以g(x)=0在(-2,t)上有解,且只有一解,
当1<t<4时,g(-2)>0且g(t)>0,
但由于g(0)=-
4
3
(t-1)2
<0,
所以g(x)=0在(-2,t)上有解,且有两解,
当t=1时,g(x)=x2-x=0,
解得x=0或1,
所以g(x)=0在(-2,t)上有且只有一解,
当t=4时,g(x)=x2-x-6=0,
所以g(x)=0在(-2,t)上也有且只有一解,
综上所述,对于任意的t>-2,总存在x0∈(-2,t),满足
f′(x0)
ex0
=
2
3
(t-1)2

且当t≥4或-2<t≤1时,有唯一的x0适合题意,
当1<t<4时,有两个x0适合题意
核心考点
试题【已知函数f(x)=(x2-3x+3)•ex,其定义域为[-2,t](t>-2).(1)试确定t的范围,使得函数f(x)在区间[-2,t]上为增函数;(2)求证:】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
深化拓展:求函数y=x+
a
x
(a>0)的单调区间.
题型:不详难度:| 查看答案
已知函数f(x)=-x3+3x2+9x+a
(1)求f(x)的单调递减区间;
(2)若f(x)在区间[-2,2]上的最大值为20,求a的值并求它在[-2,2]上的最小值.
题型:不详难度:| 查看答案
已知函数f(x)=lnx-
a
x

(1)当a>0时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为
3
2
,求a的值.
题型:不详难度:| 查看答案
已知函数f(x)=e2x-1-2x.
(I)求函数f(x)的单调区间;
(II)设b∈R,求函数f(x)在区间[b,b+1]上的最小值.
题型:不详难度:| 查看答案
对于R上的可导的任意函数f(x),若满足(x2-3x+2)f"(x)≤0,则函数f(x)在区间[1,2]上必有(  )
A.f(1)≤f(x)≤f(2)B.f(x)≤f(1)
C.f(x)≥f(2)D.f(x)≤f(1)或f(x)≥f(2)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.