当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)>0,对任意正数a、b,若a<b,则af(a),bf(b)的大小关系为______....
题目
题型:不详难度:来源:
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)>0,对任意正数a、b,若a<b,则af(a),bf(b)的大小关系为______.
答案
因为xf"(x)-f(x)>0,所以f"(x)>
f(x)
x

因为f(x)为非负,x为正,所以f"(x)>0,函数f(x)为单调递增函数.
所以0<f(a)<f(b),又因为0<a<b
所以af(a)<bf(b)
故选Bf(b)>af(a)
核心考点
试题【f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)>0,对任意正数a、b,若a<b,则af(a),bf(b)的大小关系为______.】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数f(x)=2t2-2(ex+x)t+e2x+x2+1,g(x)=
1
2
f′(x).
(I)证明:当t<2


2
时,g(x)在R上是增函数;
(II)对于给定的闭区间[a,b],试说明存在实数k,当t>k时,g(x)在闭区间[a,b]上是减函数;
(III)证明:f(x)≥
3
2
题型:辽宁难度:| 查看答案
设函数f(x)=x3+ax2-a2x+m(a≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.
题型:不详难度:| 查看答案
若函数f(x)=x3-ax2+1在(0,2)内单调递减,则实数a的取值范围为(  )
A.a≥3B.a=3C.a≤3D.0<a<3
题型:不详难度:| 查看答案
已知函数f(x),g(x)是定义在R上可导函数,满足f′(x)•g(x)-f(x)•g′(x)<0,且f(x)>0,g(x)>0,对a≤c≤b时.下列式子正确的是(  )
A.f(c)•g(a)≥f(a)•g(c)B.f(a)•g(a)≥f(b)•g(b)
C.f(b)•g(a)≥f(a)•g(b)D.f(c)•g(b)≥f(b)•g(c)
题型:不详难度:| 查看答案
已知函数f(x)=lnx-ax+1在x=2处的切线斜率为-
1
2

(I)求实数a的值及函数f(x)的单调区间;
(II)设g(x)=
x2+2kx+k
x
,对∀x1∈(0,+∞),∃x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正实数k的取值范围;
(III)证明:
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N*,n≥2)•
题型:绵阳一模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.