当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 函数f(x)=ax3+bx2+cx+d的图象交y轴于点P,且函数图象在P点处的切线方程为12x-y-4=0,若函数f(x)在x=2处取得极值为0.(1)求函数f...
题目
题型:不详难度:来源:
函数f(x)=ax3+bx2+cx+d的图象交y轴于点P,且函数图象在P点处的切线方程为12x-y-4=0,若函数f(x)在x=2处取得极值为0.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间.
答案
(1)函数f(x)与y轴交点P(0,d),
又f′(x)=3ax2+2bx+c,f′(2)=12a+4b+c=0,①
又函数f(x)在x=2处取得极值为0,所以f(2)=8a+4b+2c+d=0,②
又切线的斜率k=12,所以f′(0)=c=12,③
过P点的直线y-d=12(x-0)⇒12x-y+d=0  ④
解①,②,③,④得a=2,b=-9,c=12,d=-4
所以f(x)=2x3-9x2+12x-4
(2)f′(x)=6x2-18x+12>0得x>2或x<1.
函数f(x)的单调增区间为(-∞,1),(2,+∞)
核心考点
试题【函数f(x)=ax3+bx2+cx+d的图象交y轴于点P,且函数图象在P点处的切线方程为12x-y-4=0,若函数f(x)在x=2处取得极值为0.(1)求函数f】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
设f(x)是定义在R上的奇函数,且函数y=f(x)与y=g(x)的图象关于直线x=1对称,当x>2时,g(x)=a(x-2)-(x-2)3(a为常数).
(1)求f(x)的解析式;
(2)若f(x)对区间[1,+∞)上的每个x值,恒有f(x)≥-2a成立,求a的取值范围.
题型:不详难度:| 查看答案
已知x=2是函数f(x)=
x-a
x2
的一个极值点,则f(x)的单调递减区间是(  )
A.(-∞,2)B.(2,+∞)C.(-∞,0)∪(2,+∞)D.(-∞,0)和(2,+∞)
题型:不详难度:| 查看答案
设函数f(x)=ln(x-1)+
2a
x
(a∈R)

(1)求函数f(x)的单调区间;
(2)如果当x>1,且x≠2时,
ln(x-1)
x-2
a
x
恒成立,则求实数a的取值范围.
题型:不详难度:| 查看答案
对于R上可导的任意函数f(x),若满足(x-2)f"(x)≥0,则必有(  )
A.f(1)+f(3)<2f(2)B.f(1)+f(3)≥2f(2)C.f(1)+f(3)≤2f(2)D.f(1)+f(3)>2f(2)
题型:不详难度:| 查看答案
设a为实数,函数f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函数,求a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.