当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 设函数f(x)=ln x-p(x-1),p∈R.(1)当p=1时,求函数f(x)的单调区间;(2)设函数g(x)=xf(x)+p(2x2-x-1)(x≥1),求...
题目
题型:不详难度:来源:
设函数f(x)=ln x-p(x-1),p∈R.
(1)当p=1时,求函数f(x)的单调区间;
(2)设函数g(x)=xf(x)+p(2x2-x-1)(x≥1),求证:当p≤-时,有g(x)≤0.
答案
(1)f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).
(2)见解析
解析
(1)解:当p=1时,f(x)=ln x-x+1,
其定义域为(0,+∞),
∴f′(x)=-1,
由f′(x)=-1>0,得0<x<1,
由f′(x)<0,得x>1,
∴f(x)的单调递增区间为(0,1),
单调递减区间为(1,+∞).
(2)证明:由函数g(x)=xf(x)+p(2x2-x-1)
=xln x+p(x2-1),
得g′(x)=ln x+1+2px.
由(1)知,当p=1时,f(x)≤f(1)=0,
即不等式ln x≤x-1成立,
所以当p≤-时,g′(x)=ln x+1+2px≤(x-1)+1+2px=(1+2p)x≤0,
即g(x)在[1,+∞)上单调递减,
从而g(x)≤g(1)=0满足题意.
核心考点
试题【设函数f(x)=ln x-p(x-1),p∈R.(1)当p=1时,求函数f(x)的单调区间;(2)设函数g(x)=xf(x)+p(2x2-x-1)(x≥1),求】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数f(x)=ln x-
(1)当a>0时,判断f(x)在定义域上的单调性;
(2)f(x)在[1,e]上的最小值为,求实数a的值;
(3)试求实数a的取值范围,使得在区间(1,+∞)上函数y=x2的图象恒在函数y=f(x)图象的上方.
题型:不详难度:| 查看答案
已知函数f(x)=ln x-ax+1在x=2处的切线斜率为-.
(1)求实数a的值及函数f(x)的单调区间;
(2)设g(x)=,对∀x1∈(0,+∞),∃x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正实数k的取值范围;
(3)证明: ++…+<(n∈N*,n≥2).
题型:不详难度:| 查看答案
下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f′(x)的图象,则f(-1)等于(  )
A.B.-C.D.-

题型:不详难度:| 查看答案
设函数 
求证:当时,函数在区间上是单调递减函数;
的取值范围,使函数在区间上是单调函数.
题型:不详难度:| 查看答案
函数是减函数的区间为 (     )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.