当前位置:高中试题 > 数学试题 > 常见函数的导数 > 求下列各函数的导数:(1)y=;(2)y=(x+1)(x+2)(x+3);(3)y=-sin(1-2cos2);(4)y=+....
题目
题型:不详难度:来源:
求下列各函数的导数:
(1)y=
(2)y=(x+1)(x+2)(x+3);
(3)y=-sin(1-2cos2);
(4)y=+.
答案
(1)-x+3x2-2x-3sinx+x-2cosx.       (2)3x2+12x+11
(3)cosx       (4)
解析
(1)∵y==x+x3+
∴y′=(x)′+(x3)′+(x-2sinx)′
=-x+3x2-2x-3sinx+x-2cosx.
(2)方法一  y=(x2+3x+2)(x+3)
=x3+6x2+11x+6,
∴y′=3x2+12x+11.
方法二
y′=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)(x+3)′
=[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)(x+2)
=(x+2+x+1)(x+3)+(x+1)(x+2)
=(2x+3)(x+3)+(x+1)(x+2)
=3x2+12x+11.
(3)∵y=-sin(-cos)=sinx,
∴y′=(sinx) ′= (sinx)′=cosx.
(4)y=+==
∴y′=()′==.
核心考点
试题【求下列各函数的导数:(1)y=;(2)y=(x+1)(x+2)(x+3);(3)y=-sin(1-2cos2);(4)y=+.】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
求下列函数的导数:
(1)y=;
(2)y=sin2(2x+);
(3)y=x.
题型:不详难度:| 查看答案
求y=tanx的导数.
题型:不详难度:| 查看答案
求下列函数在x=x0处的导数.
(1)f(x)=cosx·sin2x+cos3x,x0=
(2)f(x)=,x0=2;
(3)f(x)=,x0=1.
题型:不详难度:| 查看答案
设a>0,函数f(x)=,b为常数.
(1)证明:函数f(x)的极大值点和极小值点各有一个;
(2)若函数f(x)的极大值为1,极小值为-1,试求a的值.
题型:不详难度:| 查看答案
已知函数f(x)=x3-ax2-3x.
(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-是f(x)的极值点,求f(x)在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.