当前位置:高中试题 > 数学试题 > 常见函数的导数 > (1)当a=-1时,求函数图像上的点到直线距离的最小值;(2)是否存在正实数a,使对一切正实数x都成立?若存在,求出a的取值范围;若不存在,请说明理由...
题目
题型:不详难度:来源:


(1)当a=-1时,求函数图像上的点到直线距离的最小值;
(2)是否存在正实数a,使对一切正实数x都成立?若存在,求出a的取值范围;若不存在,请说明理由
答案

(1)(2)a的取值范围为   
解析
(1)由
为减函数

则令                                                         …………2分
所求距离的最小值即为到直线的距离
                            …………5分
(2)假设存在实数a满足条件,令
                                                                   …………7分

为减函数
为增函数
                                                  …………10分

的取值范围为          …………12分
核心考点
试题【(1)当a=-1时,求函数图像上的点到直线距离的最小值;(2)是否存在正实数a,使对一切正实数x都成立?若存在,求出a的取值范围;若不存在,请说明理由】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
(本题满分15分)设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足
(I)证明:函数是集合M中的元素;
(II)证明:函数具有下面的性质:对于任意,都存在,使得等式成立。 
(III)若集合M中的元素具有下面的性质:若的定义域为D,则对于任意[m,n],都存在,使得等式成立。试用这一性质证明:对集合M中的任一元素,方程只有一个实数根。
题型:不详难度:| 查看答案
(本小题满分15分)已知函数 .
(Ⅰ)试用含式子表示;(Ⅱ)求的单调区间;(Ⅲ)若,试求在区间上的最大值.
题型:不详难度:| 查看答案
(本题满分15分)已知函数 且导数.
(Ⅰ)试用含有的式子表示,并求单调区间; (II)对于函数图象上的不同两点,如果在函数图象上存在点(其中)使得点处的切线,则称存在“伴侣切线”.特别地,当时,又称存在“中值伴侣切线”.试问:在函数上是否存在两点使得它存在“中值伴侣切线”,若存在,求出的坐标,若不存在,说明理由.
题型:不详难度:| 查看答案
(本题满分15分)函数处取得极小值–2.(I)求的单调区间;(II)若对任意的,函数的图像与函数的图像至多有一个交点.求实数的范围.
题型:不详难度:| 查看答案
(本小题满分12分)已知函数
(I)求函数的单调区间;  (II)当在区间[—1,2]上是单调函数,求a的取值范围。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.