当前位置:高中试题 > 数学试题 > 常见函数的导数 > (本小题满分12分)设函数(1)若函数在内没有极值点,求的取值范围。(2)若对任意的,不等式上恒成立,求实数的取值范围。...
题目
题型:不详难度:来源:
(本小题满分12分)
设函数
(1)若函数内没有极值点,求的取值范围。
(2)若对任意的,不等式上恒成立,求实数的取值范围。
答案
(Ⅰ)   (Ⅱ)
解析
(1)由题设可知,方程   1分
[-1,1]在上没有实数根,         4分
解得     6分
(2)                 又       7分
时,;    当时,
函数的递增区间为
单调递减区间为  9分当
     10分

在[-2,2]上恒成立,         
上恒成立。      11分
的最小值为-87,   12分
核心考点
试题【(本小题满分12分)设函数(1)若函数在内没有极值点,求的取值范围。(2)若对任意的,不等式上恒成立,求实数的取值范围。】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
(本题满分14分)设函数(1)求函数的单调区间;(2)求在[—1,2]上的最小值;(3)当时,用数学归纳法证明:
题型:不详难度:| 查看答案
(本小题满分14分) 已知函数图象上一点处的切线方程为.(Ⅰ)求的值;(Ⅱ)若方程内有两个不等实根,求的取值范围(其中为自然对数的底数);(Ⅲ)令,若的图象与轴交于(其中),的中点为,求证:处的导数
题型:不详难度:| 查看答案
已知函数
(I)(i)求函数的图象的交点A的坐标;
(ii)设函数的图象在交点A处的切线分别为是否存在这样的实数a,使得?若存在,请求出a的值和相应的点A坐标;若不存在,请说明理由。
(II)记上最小值为F(a),求的最小值。
题型:不详难度:| 查看答案
(本小题满分13分)已知函数(x>0)在x = 1处
取得极值–3–c,其中a,b,c为常数。
(1)试确定a,b的值;(6分)
(2)讨论函数f(x)的单调区间;(4分)
(3)若对任意x>0,不等式恒成立,求c的取值范围。(3分)
题型:不详难度:| 查看答案
m为实数,函数 .
(1)若≥4,求m的取值范围;
(2)当m>0时,求证上是单调递增函数;
(3)若对于一切,不等式≥1恒成立,求实数m的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.