当前位置:高中试题 > 数学试题 > 常见函数的导数 > 已知函数f(x)=+++…++(n>2且n∈N﹡)设是函数f(x)的零点的最大值,则下述论断一定错误的是(   )A.B.=0C.>0D.<0...
题目
题型:不详难度:来源:
已知函数f(x)=+…+(n>2且n∈N﹡)设是函数f(x)的零点的最大值,则下述论断一定错误的是(   )
A.B.=0C.>0D.<0

答案
D
解析

试题分析:因为是决定函数值的最重要因素,当趋近无穷时,也趋近无穷,导致函数值趋近无穷,所以最终,若<0,说明在后有函数值小于0值但最终函数值大于0,说明后还有零点,这与是函数的零点的最大值矛盾,故选D.
核心考点
试题【已知函数f(x)=+++…++(n>2且n∈N﹡)设是函数f(x)的零点的最大值,则下述论断一定错误的是(   )A.B.=0C.>0D.<0】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知函数f(x)=-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f (1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e)上的最小值为-2,求a的取值范围.
题型:不详难度:| 查看答案
设函数f(x)=,g(x)=ln(2ex)(其中e为自然对数的底数)
(1)求y=f(x)-g(x)(x>0)的最小值;
(2)是否存在一次函数h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)对一切x>0恒成立;若存在,求出一次函数的表达式,若不存在,说明理由:
3)数列{}中,a1=1,=g()(n≥2),求证:<1且
题型:不详难度:| 查看答案
已知函数f(x)=+3-ax.
(1)若f(x)在x=0处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≥+ax+1在x≥时恒成立,试求实数a的取值范围.
题型:不详难度:| 查看答案
已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线
(Ⅰ)求,,,的值;
(Ⅱ)若时,,求的取值范围.
题型:不详难度:| 查看答案
已知函数
(Ⅰ)若处的切线与直线平行,求的单调区间;
(Ⅱ)求在区间上的最小值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.