当前位置:高中试题 > 数学试题 > 常见函数的导数 > 若(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5=________....
题目
题型:不详难度:来源:
若(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5=________.
答案
10
解析
原等式两边求导得5(2x-3)4·(2x-3)′=a1+2a2x+3a3x2+4a4x3+5a5x4,令上式中x=1,得a1+2a2+3a3+4a4+5a5=10.
核心考点
试题【若(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5=________.】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知函数f(x)=ax+ln x,其中a为常数,e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)当a=-1时,试推断方程|f(x)|=是否有实数解,并说明理由.
题型:不详难度:| 查看答案
已知a∈R,函数f(x)=+ln x-1.
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)求f(x)在区间(0,e]上的最小值.
题型:不详难度:| 查看答案
已知函数
(1)当时,求函数的单调递增区间;
(2)记函数的图象为曲线,设点是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”,试问:函数是否存在“中值相依切线”,请说明理由.
题型:不详难度:| 查看答案
是函数)的两个极值点
(1)若,求函数的解析式;
(2)若,求的最大值。
题型:不详难度:| 查看答案
若函数的导函数在区间上有零点,则在下列区间单调递增的是(    )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.