当前位置:高中试题 > 数学试题 > 一元二次不等式及其解法 > 选修4-5:不等式选讲设函数f(x)=|x+1|+|x-a|(a>0)(Ⅰ)若a=2时,解不等式f(x)≤4;(Ⅱ)若不等式f(x)≤4的对一切x∈[a,2]恒...
题目
题型:黑龙江二模难度:来源:
选修4-5:不等式选讲
设函数f(x)=|x+1|+|x-a|(a>0)
(Ⅰ)若a=2时,解不等式f(x)≤4;
(Ⅱ)若不等式f(x)≤4的对一切x∈[a,2]恒成立,求实数a的取值范围.
答案
(Ⅰ)由于函数f(x)=|x+1|+|x-a|(a>0),若a=2时,则不等式f(x)≤4 即|x+1|+|x-2|≤4.
而由绝对值的意义可得|x+1|+|x-2|表示数轴上的x对应点到-2和2对应点的距离之和,而-
3
2
5
2
应点到-2和2对应点的距离之和正好等于4,
故不等式f(x)≤4的解集为[-
3
2
5
2
].
(Ⅱ)当x∈[a,2],不等式即 x+1+x-a≤4,解得 a≥2x-3.由于2x-3的最大值为2×2-3=1,∴a≥1,
故 1≤a≤2,实数a的取值范围为[1,2].
核心考点
试题【选修4-5:不等式选讲设函数f(x)=|x+1|+|x-a|(a>0)(Ⅰ)若a=2时,解不等式f(x)≤4;(Ⅱ)若不等式f(x)≤4的对一切x∈[a,2]恒】;主要考察你对一元二次不等式及其解法等知识点的理解。[详细]
举一反三
已知函数f(x)=|x|,x∈R.
(Ⅰ)解不等式f(x-1)>2;
(Ⅱ)若[f(x)]2+y2+z2=9,试求x+2y+2z的最小值.
题型:泉州模拟难度:| 查看答案
不等式1≤|x-2|≤7的解集是______.
题型:不详难度:| 查看答案
选修4-5:不等式选讲
对于任意实数a(a≠0)和b,不等式|a+b|+|a-2b|≥|a|(|x-1|+|x-2|)恒成立,试求实数x的取值范围.
题型:江苏二模难度:| 查看答案
选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.
题型:不详难度:| 查看答案
不等式|2x+1|-2|x-1|>0的解集为______.
题型:湖南难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.