当前位置:高中试题 > 数学试题 > 一元二次不等式及其解法 > 对于一切实数x不等式ax2+ax-2≤0恒成立,则a的取值范围为(  )A.(8,0)B.[-8,0]C.(8,0]D.[-8,0)...
题目
题型:不详难度:来源:
对于一切实数x不等式ax2+ax-2≤0恒成立,则a的取值范围为(  )
A.(8,0)B.[-8,0]C.(8,0]D.[-8,0)
答案
当a>0时,显然不能满足对于一切实数x不等式ax2+ax-2≤0恒成立.
当a=0时,对于一切实数x不等式ax2+ax-2≤0恒成立.
当a<0时,∵于一切实数x不等式ax2+ax-2≤0恒成立,∴△=a2+8a≤0,a≠0,
解得-8≤a<0.
综上可得,-8≤a≤0,
故选B.
核心考点
试题【对于一切实数x不等式ax2+ax-2≤0恒成立,则a的取值范围为(  )A.(8,0)B.[-8,0]C.(8,0]D.[-8,0)】;主要考察你对一元二次不等式及其解法等知识点的理解。[详细]
举一反三
解不等式:
(1)x2+2x-35≤0
(2)2x2+5x+4<0
(3)-3x2+5x-2>0
(4)-x2+x-
1
4
≤0
题型:不详难度:| 查看答案
已知函数f(x)=





x+2,x≤0
-x+2,x>0
,求不等式f(x)≤x2的解集.
题型:不详难度:| 查看答案
不等式-x2-5x+6≥0的解集为(  )
A.{x|x≥6或x≤-1}B.{x|-1≤x≤6}C.{x|-6≤x≤1}D.{x|x≤-6或x≥1}
题型:不详难度:| 查看答案
已知关于x的不等式ax2-(a+1)x+b<0
(1)若不等式的解集是{x|1<x<5},求a+b的值;
(2)若a≠0,b=1,求此不等式的解集.
题型:不详难度:| 查看答案
若不等式ax2+bx+c>0(a≠0)的解集为∅,则下列结论中正确的是(  )
A.a<0,b2-4ac>0B.a>0,b2-4ac<0
C.a<0,b2-4ac≤0D.a>0,b2-4ac≥0
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.