当前位置:高中试题 > 数学试题 > 数列综合 > 数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,n∈N*(1)求数列{an}的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求S...
题目
题型:不详难度:来源:
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,n∈N*
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=
1
n(12-an)
(n∈N*),Tn=b1+b2+…+bn(n∈N*)
,是否存在最大的整数m,使得对任意n∈N*,均有Tn
m
32
成立?若存在,求出m的值:若不存在,请说明理由.
答案
(1)由题意,an+2-a
n
+1
=an+1-an
,∴{an}为等差数列,设公差为d,
由题意得2=8+3d⇒d=-2,∴an=8-2(n-1)=10-2n
(2)若10-2n≥0则n≤5,n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=
8+10-2n
2
×n=9n-n2

n≥6时,Sn=a1+a2+…+a5-a6-a7…-an=S5-(Sn-S5)=2S5-Sn=n2-9n+40
Sn=





9n-n2n≤5
n2-9n+40n≥6

(3)∵bn=
1
n(12-an)
=
1
2n(n+1)
=
1
2
(
1
n
-
1
n+1
)
Tn=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n-1
-
1
n
)+(
1
n
-
1
n+1
)]=
n
2(n+1)

Tn
m
32
对任意n∈N*成立,即
n
n+1
m
16
对任意n∈N*成立,∵
n
n+1
(n∈N*)
的最小值是
1
2
,∴
m
16
1
2
,∴m的最大整数值是7.
即存在最大整数m=7,使对任意n∈N*,均有Tn
m
32
核心考点
试题【数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,n∈N*(1)求数列{an}的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求S】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
设数列{an}的前n项和为Sn.已知a1=1,Sn=
1
3
(an+1-1)
,n∈N*
(1)写出a2,a3的值,并求数列{an}的通项公式;
(2)记bn=
1
log4an+1log4an+2
,数列{bn}的前n项和为Tn,试比较Tn与1的大小.
题型:不详难度:| 查看答案
数列{an}中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列,通过计算S1,S2,S3,猜想当n≥1时,Sn=(  )
A.
2n+1
2n-1
B.
2n-1
2n-1
C.
n(n+1)
2n
D.1-
1
2n-1
题型:不详难度:| 查看答案
设数列xn满足log2xn+1=1+log2xn(n∈N*),且x1+x2+…+x10=10,记xn的前n项和为Sn,则S20=______.
题型:江苏模拟难度:| 查看答案
数列{an}中,a1=1,an,an+1是方程x2-(2n+1)x+
1
bn
=0
的两个根,则数列{bn}的前n项和Sn等于(  )
A.
n
2n+1
B.
n
n+1
C.
1
2n+1
D.
1
n+1
题型:不详难度:| 查看答案
已知数列{an}的前n项和Sn=n3,则a6+a7+a8+a9等于______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.