当前位置:高中试题 > 数学试题 > 数列综合 > 设数列{an} 中,an+1+(-1)nan=2n-1,则数列{an}前12项和等于______....
题目
题型:不详难度:来源:
设数列{an} 中,an+1+(-1)nan=2n-1,则数列{an}前12项和等于______.
答案
∵an+1+(-1)nan=2n-1,
∴a2-a1=1,a3+a2=3,a4-a3=5,a5+a4=7,a6-a5=9.a7+a9=11,…a11+a10=19,a12-a11=21,
相邻的两个式子作差(后面的减前面)得:a1+a3=2,a4+a2=8,…a12+a10=40
∴从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,
以16为公差的等差数列.
以上式子相加可得,S12=a1+a2+…+a12
=(a1+a3)+(a5+a7)+(a9+a11)+(a2+a4)+(a6+a8)+(a10+a12)=3×2+8+24+40=78
故答案为:78.
核心考点
试题【设数列{an} 中,an+1+(-1)nan=2n-1,则数列{an}前12项和等于______.】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列{an}满足前n项和Sn=n2+1,数列{bn}满足bn=
2
an+1
,且前n项和为Tn,设cn=T2n+1-Tn
(1)求数列{bn}的通项公式;
(2)判断数列{cn}的增减性.
题型:不详难度:| 查看答案
已知数列{an}的前n项和Sn=2n,数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n=1,2,3,…).
(1)求数列{an}的通项an
(2)求数列{bn}的通项bn
(3)若cn=
anbn
n
,求数列{cn}的前n项和Tn
题型:不详难度:| 查看答案
如果有穷数列a1,a2,…,an(n∈N*),满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,则数列bn的前2008项和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命题正确的个数为(  )
A.1B.2C.3D.4
题型:黄冈模拟难度:| 查看答案
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).
(1)求数列{an}的通项公式;
(2)令cn=(-1)n+1log
an
n+1
2
,数列{cn}的前n项和为Tn,求证:当n∈N*且n≥2时,T2n


2
2
题型:不详难度:| 查看答案
2009年4月,甲型H1N1流感首现于墨西哥,并迅速蔓延至全球很多国家,科学家经过深入研究,发现了一种细菌K在***死甲型H1N1病毒的同时能够自身复制,已知1个细菌K可以***死一个甲型H1N1病毒,(K***死甲型H-1N1病毒时,自身会解体)并且生成2个细菌K,那么一个细菌K和1024个甲型H1N1病毒作用后最终一共有细菌K的个数是(  )
A.1024B.1025C.2048D.2049
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.