当前位置:高中试题 > 数学试题 > 数列综合 > 数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n-1,则a12+a22+a32+…+an2等于(  )A.(3n-1)2B.12(9n-1)...
题目
题型:不详难度:来源:
数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n-1,则a12+a22+a32+…+an2等于(  )
A.(3n-1)2B.
1
2
(9n-1)
C.9n-1D.
1
4
(3n-1)
答案
∵a1+a2+a3+…+an=3n-1,①
∴a1+a2+a3+…+an+1=3n+1-1,②
②-①得:an+1=3n+1-3n=2×3n
∴an=2×3n-1
当n=1时,a1=31-1=2,符合上式,
∴an=2×3n-1
an2=4×9n-1
a12=4,
an+12
an2
=9,
∴{an2}是以4为首项,9为公比的等比数列,
∴a12+a22+a32+…+an2=
4×(1-9n)
1-9
=
1
2
(9n-1).
故选B.
核心考点
试题【数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n-1,则a12+a22+a32+…+an2等于(  )A.(3n-1)2B.12(9n-1)】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
在数列 {an} 与 {bn} 中,数列 {an} 的前n项和Sn满足 Sn=n2+2n,数列 {bn} 的前n项和Tn满足 3Tn=nbn+1,且b1=1,n∈N*
(Ⅰ)求数列 {an} 的通项公式;
(Ⅱ)求数列 {bn} 的通项公式;
(Ⅲ)设 cn=
bn(an-1)
n+1
cos
2nπ
3
,求数列 {cn} 的前n项和Rn
题型:不详难度:| 查看答案
设f(x)是一次函数,f(8)=15,且f(2)、f(5)、f(14)成等比数列,令Sn=f(1)+f(2)+…+f(n),n∈N*,则Sn=______.
题型:绍兴一模难度:| 查看答案
已知数列An:a1,a2,…,an,满足a1=an=0,且当2≤k≤n(k∈N*)时,(ak-ak-1)2=1.令S(An)=a1+a2+…+an
(Ⅰ)写出S(A5)的所有可能取值;
(Ⅱ)求S(An)的最大值.
题型:朝阳区二模难度:| 查看答案
设{an}是首项为1的正项数列,且(n+1)
a2n+1
-n
a2n
+an+1an=0(n∈N*)

(1)求它的通项公式;
(2)求数列{
an
n+1
}
的前n和Sn
题型:绍兴一模难度:| 查看答案
已知函数f(x)=lg(1+
1
x
),点An(n,0)(n∈N*),过点An作直线x=n交f(x)的图象于点Bn,设O为坐标原点.记θn=∠Bn+1AnAn+1(n∈N*),化简求和式Sn=tanθ1+tanθ2+…+tanθn=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.