当前位置:高中试题 > 数学试题 > 数列综合 > 已知数列{an}前n项和为Sn且2an-Sn=2(n∈N*).(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an(n≥1),求...
题目
题型:不详难度:来源:
已知数列{an}前n项和为Sn且2an-Sn=2(n∈N*).
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an(n≥1),求{bn}通项公式及前n项和Tn
答案
(Ⅰ)∵2an-Sn=2,∴2an+1-Sn+1=2
两式相减得2an+1-2an-(Sn+1-Sn)=0.∴an+1=2an
又n=1时,2a1-S1=2.∴a1=2
∴{an}是以2为首项,2为公比的等比数列(3分)
∴an=a1qn-1=2•2n-1=2n(6分)
(Ⅱ)∵bn+1=bn+an,∴bn+1-bn=2n(8分)
∴b2-b1=2,b3-b2=22,b4-b3=23,,bn-bn-1=2n-1
相加,bn-b1=2+22+23++2n-1,∵b1=1,
∴bn=1+2+22++2n-1=2n-1)
即bn=2n-1(12分)
∴Tn=(2+22++2n-1+2n)-n=2n+1-(n+2)(14分)
核心考点
试题【已知数列{an}前n项和为Sn且2an-Sn=2(n∈N*).(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an(n≥1),求】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列2004,2005,1,-2004,-2005,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2010项之和S2010=______.
题型:不详难度:| 查看答案
设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上满足下面条件的任意两点.若


OM
=
1
2
(


OA
+


OB
)
,则点M的横坐标为
1
2

(1)求证:M点的纵坐标为定植;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,求Sn(n≥2,n∈N*).
(3)已知an=





2
3
(n=1)
1
(Sn+1)(Sn+1+1)
(n≥2)
,(其中n∈N*,又知Tn为数列{an}的前n项和,若Tn<(15)λ(Sn+1+1)对于一切n∈N*.都成立,试求λ的取值范围.
题型:不详难度:| 查看答案
已知数列{an}的前4项和等于4,设前n项和为Sn,且n≥2时,an=
1
2
(


Sn
+


Sn-1
)
,则S10=______.
题型:不详难度:| 查看答案
设{an}是正数数列,其前n项和Sn满足Sn=
1
4
(an-1)(an+3).
(1)求a1的值;
(3)求数列{an}的通项公式;
(5)对于数列{bn},Tn为数列{bn}的前n项和,令bn=
1
sn
,试求Tn的表达式.
题型:不详难度:| 查看答案
若数列{an}满足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常数),则称数列{an}为二阶线性递推数列,且定义方程x2=px+q为数列{an}的特征方程,方程的根称为特征根; 数列{an}的通项公式an均可用特征根求得:
①若方程x2=px+q有两相异实根α,β,则数列通项可以写成an=c1αn+c2βn,(其中c1,c2是待定常数);
②若方程x2=px+q有两相同实根α,则数列通项可以写成an=(c1+nc2)αn,(其中c1,c2是待定常数);
再利用a1=m1,a2=m2,可求得c1,c2,进而求得an.根据上述结论求下列问题:
(1)当a1=5,a2=13,an+2=5an+1-6an(n∈N*)时,求数列{an}的通项公式;
(2)当a1=1,a2=11,an+2=2an+1+3an+4(n∈N*)时,求数列{an}的通项公式;
(3)当a1=1,a2=1,an+2=an+1+an(n∈N*)时,记Sn=a1Cn1+a2Cn2+…+anCnn,若Sn能被数8整除,求所有满足条件的正整数n的取值集合.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.