当前位置:高中试题 > 数学试题 > 数列综合 > 设数列{an}是一个公差不为零的等差数列,已知它的前10项和为110,且a1,a2,a4成等比数列.(1)求数列{an}的通项公式(2)若bn=(n+1)an求...
题目
题型:不详难度:来源:
设数列{an}是一个公差不为零的等差数列,已知它的前10项和为110,且a1,a2,a4成等比数列.
(1)求数列{an}的通项公式
(2)若bn=(n+1)an求数列{
1
bn
}
的前n项和Tn
答案
(1)∵a1,a2,a4成等比数列,∴a22=a1a4
∵{an}是等差数列,∴(a1+d)2=a1(a1+3d),化简得a1=d
∵S10=110,∴10a1+45d=110
a1=d,代入上式得55d=110,∴d=2,an=a1+(n-1)d=2n
∴数列{an}的通项公式为an=2n;
(2)
1
bn
=
1
2n(n+1)
=
1
2
1
n
-
1
n+1

∴Tn=
1
2
1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=
1
2
(1-
1
n+1
)
=
n
2n+2
核心考点
试题【设数列{an}是一个公差不为零的等差数列,已知它的前10项和为110,且a1,a2,a4成等比数列.(1)求数列{an}的通项公式(2)若bn=(n+1)an求】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
数列{an}的通项公式an=


n+1
-


n
(n∈N*),若前n项的和Sn=10,则项数n为(  )
A.10B.11C.120D.121
题型:不详难度:| 查看答案
在公差不为0的等差数列{an}和等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3
(1)求{an}的公差d和{bn}的公比q;
(2)设cn=an+bn+2,求数列{cn}的通项公式cn及前n项和Sn
题型:不详难度:| 查看答案
已知数列{an}是首项a1=1的等比数列,其前n项和Sn中,S3、S4、S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=2log
1
2
|an|+1
,求数列{bn}的前n项和为Tn
(3)求满足(1-
1
T2
)(1-
1
T3
)•…•(1-
1
Tn
)>
1013
2013
的最大正整数n的值.
题型:不详难度:| 查看答案
设数列{an}的前n项和Sn,令Tn=
S1+S2+…+Sn
n
,称Tn为数列a1,a2…an的“理想数”,已知数a1,a2…a501的“理想数”为2008,那么数列3,a1,a2…a501的“理想数”为(  )
A.2006B.2007C.2008D.2009
题型:不详难度:| 查看答案
已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),
(1)求数列{an}的通项公式an
(2)若数列bn满足bn=log2(an+2),Tn为数列{
bn
an+2
}的前n项和,求Tn
(3)(只理科作)接(2)中的Tn,求证:Tn
1
2
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.