当前位置:高中试题 > 数学试题 > 数列综合 > 设Sn为数列{an}前n项和,对任意的n∈N*,都有Sn=2-an,数列{bn}满足bn=bn-11+bn-1,b1=2a1,(1)求证:数列{an}是等比数列...
题目
题型:东莞二模难度:来源:
设Sn为数列{an}前n项和,对任意的n∈N*,都有Sn=2-an,数列{bn}满足bn=
bn-1
1+bn-1
,b1=2a1
(1)求证:数列{an}是等比数列,并求{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)求数列{
1
an+2bn
}
的前n项和Tn
答案
(本小题满分14分)
证明:(1)当n=1时,a1=S1=2-a1,解得a1=1.                                …(1分)
当n≥2时,an=Sn-Sn-1=an-1-an,即2an=an-1
an
an-1
=
1
2
(n≥2)
.                                                   …(2分)
∴数列{an}是首项为1,公比为
1
2
的等比数列,即an=(
1
2
)n-1,n∈N*
.     …(4分)
(2)b1=2a1=2.                                                           …(5分)
bn=
bn-1
1+bn-1

1
bn
=
1
bn-1
+1
,即
1
bn
-
1
bn-1
=1(n≥2)
.                  …(6分)
{
1
bn
}
是首项为
1
2
,公差为1的等差数列.                                 …(7分)
1
bn
=
1
2
+(n-1)•1=
2n-1
2
bn=
2
2n-1
…(8分)
(3)∵an+2=(
1
2
)n+1
bn=
2
2n-1

1
an+2bn
=2n(2n-1)
.             …(9分)
所以Tn=
22
b1
+
23
b2
+
24
b3
+…+
2n
bn-1
+
2n+1
bn
,…(10分)
Tn=21×1+22×3+23×5+…+2n-1×(2n-3)+2n×(2n-1),①…(11分)
2Tn=22×1+23×3+24×5+…+2n×(2n-3)+2n+1×(2n-1),②…(12分)
②-①得Tn=2n+1×(2n-1)-2-23-24-…-2n+1,…(13分)
Tn=2n+1×(2n-1)-2-
23(1-2n-1)
1-2
=2n+1×(2n-3)+6
.                …(14分)
核心考点
试题【设Sn为数列{an}前n项和,对任意的n∈N*,都有Sn=2-an,数列{bn}满足bn=bn-11+bn-1,b1=2a1,(1)求证:数列{an}是等比数列】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
(1)数列an的前n项和Sn=n2+1.则数列an的通项公式为______;
(2)设数列an的前n项和为Sn=2n2,则数列an的通项公式为______.
题型:不详难度:| 查看答案
(教材江苏版第62页习题7)(1)已知数列an的通项公式为an=
1
n(n+1)
,则前n项的和 ______;(2)已知数列an的通项公式为an=
1


n
+


n+1
,则前n项的和 ______.
题型:不详难度:| 查看答案
已知数列{an}的前n项和为Sn,a1=1,2Sn=an+1,则Sn=(  )
A.2n-1B.2n-1C.3n-1D.
1
2
(3n-1)
题型:房山区二模难度:| 查看答案
设数列{an}的通项为an=2n-10(n∈N+),则|a1|+|a2|+…+|a15|=______.
题型:许昌二模难度:| 查看答案
已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3),令bn=
1
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令Tn=b1+b2•2+b3•22+…bn•2n-1
求证:①对于任意正整数n,都有Tn
1
6
.②对于任意的m∈(0,
1
6
)
,均存在n0∈N*,使得n≥n0时,Tn>m.
题型:湖北模拟难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.