当前位置:高中试题 > 数学试题 > 数列综合 > 设等差数列{an}的前n项和为Sn,且a3=6,S10=110.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}前n项和为Tn,且Tn=1-(22)an,令...
题目
题型:不详难度:来源:
设等差数列{an}的前n项和为Sn,且a3=6,S10=110.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}前n项和为Tn,且Tn=1-(


2
2
)an
,令cn=anbn(n∈N*).求数列{cn}的前n项和Rn
答案
(Ⅰ)设等差数列{an}的公差为d,
∵a3=6,S10=110.
∴a1+2d=6,10a1+
10×9
2
d=110

解得a1=2,d=2,
∴数列{an}的通项公式an=2+(n-1)•2=2n;
(Ⅱ)∵Tn=1-(


2
2
)an=1-(


2
2
)2n=1-(
1
2
)n

当n=1时,b1=T1=1-(


2
2
)2
=
1
2

当n≥2时,bn=Tn-Tn-1=1-(
1
2
)n-[1-(
1
2
)n-1]
=(
1
2
)n

且n=1时满足,
∴数列{an}的通项公式为bn=(
1
2
)n

又an=2n,
cn=
2n
2n
=
n
2n-1

Rn=
1
20
+
2
21
+
3
22
+…+
n
2n-1

1
2
Rn=
1
2
+
2
22
+
3
23
+…+
n
2n

两式相减得:
1
2
Rn=
1
20
+
1
21
+
1
22
+…+
1
2n-1
-
n
2n
=
1-
1
2n
1-
1
2
-
n
2n
=2-
n+2
2n

Rn=4-
n+2
2n-1
核心考点
试题【设等差数列{an}的前n项和为Sn,且a3=6,S10=110.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}前n项和为Tn,且Tn=1-(22)an,令】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知函数f(n)=n2sin
2
,且an=f(n)+f(n+1),则a1+a2+a3+…+a2014=______.
题型:不详难度:| 查看答案
数列{an}是递增的等差数列,且a1+a6=-6,a3•a4=8.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn的最小值;
(3)求数列{|an|}的前n项和Tn
题型:不详难度:| 查看答案
已知正项等比数列{an}(n∈N*),首项a1=3,前n项和为Sn,且S3+a3、S5+a5、S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{nSn}的前n项和Tn
题型:不详难度:| 查看答案
已知等差数列{an},公差d>0,前n项和为Sn,S3=6,且满足a3-a1,2a2,a8成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
1
anan+2
,求数列{bn}的前n项和Tn的值.
题型:不详难度:| 查看答案
设项数均为k(k≥2,k∈N*)的数列{an}、{bn}、{cn}前n项的和分别为Sn、Tn、Un.已知:an-bn=2n(1≤n≤k,n∈N*),且集合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k-2,4k}.
(1)已知Un=2n+2n,求数列{cn}的通项公式;
(2)若k=4,求S4和T4的值,并写出两对符合题意的数列{an}、{bn};
(3)对于固定的k,求证:符合条件的数列对({an},{bn})有偶数对.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.