当前位置:高中试题 > 数学试题 > 数列综合 > 12分)已知是数列的前项和,且对任意,有.记.其中为实数,且. (1)当时,求数列的通项; (2)当时,若对任意恒成立,求的取值范围....
题目
题型:不详难度:来源:
12分)已知是数列的前项和,且对任意,有.记.其中为实数,且.
(1)当时,求数列的通项;
(2)当时,若对任意恒成立,求的取值范围.
答案

时,  ∴ 
相减    ∴.
则: ∴
(1)时,   ∴
(2)由 

则:
1°当时,, ,
递增,而 ∴只需, ∴
2°当时,符合条件
3°当时,,
递减. 成立.
综上所述.
解析

核心考点
试题【12分)已知是数列的前项和,且对任意,有.记.其中为实数,且. (1)当时,求数列的通项; (2)当时,若对任意恒成立,求的取值范围.】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
(本小题满分16分) [已知数列满足
,.
(1)求数列的通项公式
(2)若对每一个正整数,若将按从小到大的顺序排列后,此三项均能构成等
差数列, 且公差为.①求的值及对应的数列
②记为数列的前项和,问是否存在,使得对任意正整数恒成立?若存
在,求出的最大值;若不存在,请说明理由.
题型:不详难度:| 查看答案
设数列项和为,若.
(1)求数列的通项公式;
(2)若,数列项和为,证明:
(3)是否存在自然数,使?若存在,求出的值;若不存在,说明理由.
题型:不详难度:| 查看答案
项数为n的数列的前k项和为,定义为该项数列的“凯森和”,如果项系数为99项的数列的“凯森和”为1000,那么项数为100的数列100,的“凯森和”为(   )
A.991B.1001C.1090D.1100

题型:不详难度:| 查看答案
(本小题满分14分)
已知各项均不相等的等差数列的前四项和为14,且恰为等比数列的前三项。
(1)分别求数列的前n项和
(2)设为数列的前n项和,若不等式对一切恒成立,求实数的最小值。
题型:不详难度:| 查看答案
(本题满分14分)
(理)已知数列{an}的前n项和,且=1,
.(I)求数列{an}的通项公式;
(II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有
< f’(x)”.若且函数y=xn+1在(0,+∞)上是凹函数,试判断bn与bn+1的大小;
(III)求证:≤bn<2.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.