当前位置:高中试题 > 数学试题 > 等比数列 > 已知f(x)=x2-2(n+1)x+n2+5n-7,(1)设f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;(2)设f(x)的图象的顶点...
题目
题型:不详难度:来源:
已知f(x)=x2-2(n+1)x+n2+5n-7,
(1)设f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;
(2)设f(x)的图象的顶点到x轴的距离构成数列{bn},求{bn}的前n项和Sn.
答案
(1)证明:∵f(x)=[x-(n+1)]2+3n-8,
∴an=3n-8,
∵an1-an=3,∴{an}为等差数列.
(2)∵bn=|3n-8|,
当1≤n≤2时,bn=8-3n,b1=5.
Sn==.
当n≥3时,bn=3n-8,
Sn=5+2+1+4+…+(3n-8)
=7+=.
∴Sn=  
解析

核心考点
试题【已知f(x)=x2-2(n+1)x+n2+5n-7,(1)设f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;(2)设f(x)的图象的顶点】;主要考察你对等比数列等知识点的理解。[详细]
举一反三
设等比数列{an}的前n项和为Sn,若=3,则=(  )
A.2B.
C.D.3

题型:不详难度:| 查看答案
已知等比数列{an}满足an>0,n=1,2,…,且a5·a2n5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n1=(  )
A.n(2n-1)B.(n+1)2
C.n2D.(n-1)2

题型:不详难度:| 查看答案
已知等比数列{an}满足a1+a2=3,a2+a3=6,则a7=(  )
A.64B.81
C.128 D.243

题型:不详难度:| 查看答案
已知等比数列{an}中a2=1,则其前3项的和S3的取值范围是(  )
A.(-∞,-1] B.(-∞,0)∪(1,+∞)
C.[3,+∞)D.(-∞,-1]∪[3,+∞)

题型:不详难度:| 查看答案
如果数列{an}满足a1,,,…,,…是首项为1,公比为2的等比数列,则a100=(  )
A.2100B.299
C.25050D.24950

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.