当前位置:高中试题 > 数学试题 > 等比数列 > 在等比数列{an}中,若a1=,a4=-4,则|a1|+|a2|+…+|a6|=________....
题目
题型:不详难度:来源:
在等比数列{an}中,若a1a4=-4,则|a1|+|a2|+…+|a6|=________.
答案

解析
求出等比数列的通项公式,再求和.由等比数列{an}中,若a1a4=-4,得公比为-2,所以an×(-2)n-1,|an|=×2n-1,所以|a1|+|a2|+…+|a6|= (1+2+22+…+25)=×.
核心考点
试题【在等比数列{an}中,若a1=,a4=-4,则|a1|+|a2|+…+|a6|=________.】;主要考察你对等比数列等知识点的理解。[详细]
举一反三
各项均为正数的等比数列{an}满足a1a7=4,a6=8,若函数f(x)=a1xa2x2a3x3+…+a10x10的导数为f′(x),则f=________.
题型:不详难度:| 查看答案
已知数列{an}成等比数列,且an>0.
(1)若a2a1=8,a3m.①当m=48时,求数列{an}的通项公式;②若数列{an}是唯一的,求m的值;
(2)若a2ka2k-1+…+ak+1-(akak-1+…+a1)=8,k∈N*,求a2k+1a2k+2+…+a3k的最小值.
题型:不详难度:| 查看答案
已知各项都为正的等比数列{an}满足a7a6+2a5,存在两项aman使得=4a1,则的最小值为________.
题型:不详难度:| 查看答案
已知向量p=(an,2n),q=(2n+1,-an+1),n∈N*pq垂直,且a1=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.
题型:不详难度:| 查看答案
设首项为1,公比为的等比数列{an}的前n项和为Sn,则  (  ).
A.Sn=2an-1B.Sn=3an-2
C.Sn=4-3anD.Sn=3-2an

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.