当前位置:高中试题 > 数学试题 > 等比数列 > 设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式....
题目
题型:不详难度:来源:
设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.
答案
(1) a1=1   (2) an=3·2n-1-2
解析

解:(1)由题意a1=S1=T1,Tn=2Sn-n2,
令n=1得a1=2a1-1,∴a1=1.
(2)由Tn=2Sn-n2
得Tn-1=2Sn-1-(n-1)2(n≥2)②
①-②得Sn=2an-2n+1(n≥2),
验证n=1时也成立.
∴Sn=2an-2n+1③
则Sn-1=2an-1-2(n-1)+1(n≥2)④
③-④得an=2an-2an-1-2,
即an+2=2(an-1+2),
故数列{an+2}是公比为2的等比数列,首项为3,
所以an+2=3·2n-1,从而an=3·2n-1-2.
核心考点
试题【设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式.】;主要考察你对等比数列等知识点的理解。[详细]
举一反三
已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn等于(  )
A.2n-1B.n-1C.n-1D.

题型:不详难度:| 查看答案
设Sn为数列{an}的前n项和,已知a1≠0,2an-a1=S1·Sn,n∈N*.
(1)求a1,a2,并求数列{an}的通项公式;
(2)求数列{nan}的前n项和.
题型:不详难度:| 查看答案
数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n-1,则+++…+等于(  )
A.(3n-1)2B.(9n-1)
C.9n-1D.(3n-1)

题型:不详难度:| 查看答案
已知数列{an}的前n项和Sn与通项an满足Sn=-an.
(1)求数列{an}的通项公式;
(2)设f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=++…+,求T2012;
(3)若cn=an·f(an),求{cn}的前n项和Un.
题型:不详难度:| 查看答案
已知数列{an}的前n项和Sn,求通项an.
(1)Sn=3n-1;
(2)Sn=n2+3n+1.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.