当前位置:高中试题 > 数学试题 > 等比数列 > (13分)(2011•重庆)设{an}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列...
题目
题型:不详难度:来源:
(13分)(2011•重庆)设{an}是公比为正数的等比数列a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn
答案
(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣1        2n+1﹣2+n2=2n+1+n2﹣2
解析

试题分析:(Ⅰ)由{an}是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通项公式
(Ⅱ)由{bn}是首项为1,公差为2的等差数列 可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比数列与等差数列的前n项和公式即可求得数列{an+bn}的前n项和Sn
解:(Ⅰ)∵设{an}是公比为正数的等比数列
∴设其公比为q,q>0
∵a3=a2+4,a1=2
∴2×q2="2×q+4" 解得q=2或q=﹣1
∵q>0
∴q="2"
∴{an}的通项公式为an=2×2n﹣1=2n
(Ⅱ)∵{bn}是首项为1,公差为2的等差数列
∴bn=1+(n﹣1)×2=2n﹣1
∴数列{an+bn}的前n项和Sn=+=2n+1﹣2+n2=2n+1+n2﹣2
点评:本题考查了等比数列的通项公式及数列的求和,注意题目条件的应用.在用等比数列的前n项和公式时注意辨析q是否为1,只要简单数字运算时不出错,问题可解,是个基础题.
核心考点
试题【(13分)(2011•重庆)设{an}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列】;主要考察你对等比数列等知识点的理解。[详细]
举一反三
已知数列的前项和为,且满足
(1)求数列的通项公式;
(2)求证: 
题型:不详难度:| 查看答案
已知数列中,,.
(1)求的值;
(2)求证:是等比数列,并求的通项公式
(3)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.
题型:不详难度:| 查看答案
[2013·深圳调研]已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6=(  )
A.5B.7C.6D.4

题型:不详难度:| 查看答案
[2014·河北质检]已知数列{an}满足a1=5,anan+1=2n,则=(  )
A.2B.4C.5D.

题型:不详难度:| 查看答案
[2014·北京海淀模拟]在等比数列{an}中,Sn为其前n项和,已知a5=2S4+3,a6=2S5+3,则此数列的公比q=________.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.