当前位置:高中试题 > 数学试题 > 等比数列 > 已知向量,n∈N*,向量与垂直,且a1=1.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn....
题目
题型:不详难度:来源:
已知向量,n∈N*,向量垂直,且a1=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.
答案
(1);(2)
解析

试题分析:
解题思路:(1)利用得出数列的递推式,即得数列是等比数列,求通项即可;(2)利用错位相减法求和.
规律总结:以平面向量为载体考查数列问题,体现了平面向量的工具性,要灵活选择向量知识;数列求和的方法主要有:倒序相加法、裂项抵消法、分组求和法、错位相减法.
试题解析:(1)∵向量p与q垂直,
∴2nan+1-2n+1an=0,即2nan+1=2n+1an
=2,∴{an}是以1为首项,2为公比的等比数列,
∴an=2n-1.
(2)∵bn=log2an+1,∴bn=n,∴an·bn=n·2n-1
∴Sn=1+2·2+3·22+4·23+…+n·2n-1,①
∴2Sn=1·2+2·22+3·23+4·24+…+n·2n,②
①-②得,
-Sn=1+2+22+23+24+…+2n-1-n·2n
-n·2n=(1-n)2n-1,
∴Sn=1+(n-1)2n.
核心考点
试题【已知向量,n∈N*,向量与垂直,且a1=1.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.】;主要考察你对等比数列等知识点的理解。[详细]
举一反三
已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列,则q= (    ).
A.1或-B.1C.-D.-2[

题型:不详难度:| 查看答案
已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.
(1)求an,bn; (2)求数列{an·bn}的前n项和Tn.
题型:不详难度:| 查看答案
将数列中的所有项按每一行比上一行多两项的规则排成如下数表:

已知表中的第一列数构成一个等差数列, 记为, 且, 表中每一行正中间一个数构成数列, 其前n项和为.
(1)求数列的通项公式;(2)若上表中, 从第二行起, 每一行中的数按从左到右的顺序均构成等比数列, 公比为同一个正数, 且.①求;②记, 若集合M的元素个数为3, 求实数的取值范围.
题型:不详难度:| 查看答案
为等比数列的前n项和,已知,则公比q = (    ).
A.3B.4C.5D.6

题型:不详难度:| 查看答案
已知{an}是等比数列,a4·a7=-512,a3+a8=124,且公比为整数,则公比q为(   ).
A.2B.-2C.D.-

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.