当前位置:高中试题 > 数学试题 > 等差数列 > 已知等差数列{an}的首项a1=1,且公差d>0,它的第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.(1)求数列{an}与{bn}的通...
题目
题型:不详难度:来源:
已知等差数列{an}的首项a1=1,且公差d>0,它的第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N*均有
c1
b1
+
c2
b2
+…+
cn
bn
=an+1
成立,求c1+c2+…+c2011的值;
(3)求数列{anbn}的前n项和Sn;并求满足Sn<168的最大正整数n.
答案
(1)∵a2=1+d,a5=1+4d,a14=1+13d
∴(1+4d)2=(1+d)(1+13d)
∵d>0
∴d=2
∴an=1+2(n-1)=2n-1
∴b2=a2=3,b3=a5=9,
故数列{bn}的公比是3,
∴bn=3•3n-2=3n-1
(2)由
c1
b1
+
c2
b2
+…+
cn
bn
=an+1
得当n≥2时,
c1
b1
+
c2
b2
+…+
cn-1
bn-1
=an
两式相减得
cn
bn
=an+1-an=2,
∴cn=2bn=2×3n-1(n≥2)
n=1时,c1=3
∴c1+c2+…+c2011=3+2×3+2×32+…+2×32011=32011
(3)Sn=a1b1+a2b2+…+anbn=1+3×3+5×32+…+(2n-1)×3n-1 ①
∴3Sn=1×3+3×32+5×33+…+(2n-3)×3n-1+(2n-1)3n ①
①-②得:-2Sn=-1+2(1+3+32+33+…+3n-1)-(2n-1)×3n
∴Sn=1+(n-1)3n
∵Sn是递增数列,且知S3=55,S4=244
∴满足Sn<168的最大正整数n=3.
核心考点
试题【已知等差数列{an}的首项a1=1,且公差d>0,它的第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.(1)求数列{an}与{bn}的通】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
2和8的等差中项与等比中项的积是______.
题型:不详难度:| 查看答案
抛物线y2=2px(p>0)上有A(x1,y1),B(x2,y2),C(x3,y3)三点,F是它的焦点,若|AF|,|BF|,|CF|成等差数列,则(  )
A.x1,x2,x3成等差数列B.x1,x3,x2成等差数列
C.y1,y2,y3成等差数列D.y1,y3,y2成等差数列
题型:不详难度:| 查看答案
已知等差数列{an},前n项和为Sn,若a3=3,S4=10
(1)求通项公式an
(2)求Sn的最小值;
(3)令bn=
1
4an2-1
,求数列{bn}的前n项和Tn
题型:不详难度:| 查看答案
等差数列{an}满足:a1+a3+…+a11=126,且a1-a12=-33.
(1)求数列{an}的通项公式;
(2)数列{bn}满足:bn=
3
anan+1
,n∈N*
,求数列{bn}的前100项和.
题型:不详难度:| 查看答案
已知数列{an}是公差不为零的等差数列,且a2=3,又a4,a5,a8成等比数列
(1)求数列{an}的通项公式;
(2)设Sn为数列{an}的前n项和,求使an=Sn成立的所有n的值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.