已知数列a1,a2,…a30,其中a1,a2,…a10,是首项为1,公差为1的等差数列;列a10,a11,…a20,是公差为d的等差数列;a20,a21,…a30,是公差为d2的等差数列(d≠0). (1)若a20=40,求d; (2)试写出a30关于d的关系式,并求a30的取值范围; (3)续写已知数列,使得a30,a31,…a40,是公差为d3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论? |
(1)a10=1+9=10.a20=10+10d=40,∴d=3. (2)a30=a20+10d2=10(1+d+d2)(d≠0), a30=10[(d+)2+], 当d∈(-∞,0)∪(0,+∞)时,a30∈[7.5,+∞) (3)所给数列可推广为无穷数列{an], 其中a1,a2,…,a10是首项为1,公差为1的等差数列, 当n≥1时,数列a10n,a10n+1,…,a10(n+1)是公差为dn的等差数列. 研究的问题可以是:试写出a10(n+1)关于d的关系式,并求a10(n+1)的取值范围. 研究的结论可以是:由a40=a30+10d3=10(1+d+d2+d3), 依此类推可得a10(n+1)=10(1+d+…+dn)=. 当d>0时,a10(n+1)的取值范围为(10,+∞)等. |
核心考点
试题【已知数列a1,a2,…a30,其中a1,a2,…a10,是首项为1,公差为1的等差数列;列a10,a11,…a20,是公差为d的等差数列;a20,a21,…a3】;主要考察你对
等差数列等知识点的理解。
[详细]
举一反三
已知椭圆+=1(a>b>0)与双曲线-=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是( ) |
已知等差数列{an}前n项和为Sn.若m>1,m∈N且am-1+am+1-am2=0,S2m-1=38,则m等于______. |
在等差数列{an}中,a1=,从第10项开始比1大,求公差d的取值范围 ______. |
已知数列{an}是等差数列,且a3+a11=50,又a4=13,则a2等于( ) |
已知等比数列{an}中,各项都是正数,且a1,a3,2a2成等差数列,则等于( ) |