当前位置:高中试题 > 数学试题 > 等差数列 > 已知三个数成等差数列,第一第二两数的和的3倍等于第三个数的2倍,如果第二个数减去2,则成等比数列,求这三个数....
题目
题型:不详难度:来源:
已知三个数成等差数列,第一第二两数的和的3倍等于第三个数的2倍,如果第二个数减去2,则成等比数列,求这三个数.
答案
设所求之三数为a-d,a,a+d则根据题意有





3[(a-d)+a]=2(a+d)
(a-2)2=(a-d)(a+d)

化简后得





4a=5d
4a-4=d2
解得:





a1=
5
4
d1=1





a2=5
d2=4

故所求三数为:
1
4
5
4
9
4
或1,5,9.
核心考点
试题【已知三个数成等差数列,第一第二两数的和的3倍等于第三个数的2倍,如果第二个数减去2,则成等比数列,求这三个数.】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
求证等比数列各项的对数组成等差数列(等比数列各项均为正数).
题型:不详难度:| 查看答案
等差数列{an}的前n项和为Sn,已知a5=8,S3=6,则S10-S7的值是(  )
A.24B.48C.60D.72
题型:广州模拟难度:| 查看答案
设数列{an}的各项均为正数,前n项和为Sn,已知4Sn=
a2n
+2an+1(n∈N*)

(1)证明数列{an}是等差数列,并求其通项公式;
(2)证明:对任意m、k、p∈N*,m+p=2k,都有
1
Sm
+
1
Sp
2
Sk

(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.
题型:闵行区一模难度:| 查看答案
已知集合A={a1,a2…an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),ai+aj与aj-ai至少一个属于A,
(1)分别判断集合M={0,2,4}与N=(1,2,3)是否具有性质P,并说明理由;
(2)①求证:0∈A;②当n=3时,集合A中元素a1、a2、a3是否一定成等差数列,若是,请证明;若不是,请说明理由;
(3)对于集合A中元素a1、a2、…an,若an=2012,求数列{an}的前n项和Sn(用n表示).
题型:不详难度:| 查看答案
已知等差数列{an}中,a2+a4=10,a5=9,数列{bn}中,b1=a1,bn+1=bn+an
( I)求数列{an}的通项公式,写出它的前n项和Sn
( II)求数列{bn}的通项公式;
( III)若cn=
2
anan+1
,求数列{cn}的前n项和Tn
题型:门头沟区一模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.