当前位置:高中试题 > 数学试题 > 等差数列 > 设数列{an}是等差数列,a5=6(1)当a3=3时,在数列{an}中找一项am,使a3,a5,am成等比数列,求m的值;(2)当a3=2时,若自然数nt(t=...
题目
题型:不详难度:来源:
设数列{an}是等差数列,a5=6
(1)当a3=3时,在数列{an}中找一项am,使a3,a5,am成等比数列,求m的值;
(2)当a3=2时,若自然数nt(t=1,2,3,…),满足5<n1<n2<…<nt<…,且使得a3a5an1an2…,ant…成等比数列,求数列{nt}的表达式.
答案
(1)由于a5=a3+2d  所以d=
3
2
am=a3+(m-3)d=
3
2
(m-1)
∵a3、a5、am成等比数列∴36=3×
3
2
(m-1)
∴m=9.
(2)由a3=2,a5=6,∴d=2∴an=a3+(n-3)d=2n-4
又 公比q=
a5
a3
=3
ant=2×3t+1∴2nt-4=2×3t+1∴nt=3t+1+2.
核心考点
试题【设数列{an}是等差数列,a5=6(1)当a3=3时,在数列{an}中找一项am,使a3,a5,am成等比数列,求m的值;(2)当a3=2时,若自然数nt(t=】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N*)
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.
题型:汕尾二模难度:| 查看答案
如果有穷数列a1、a2、a3、…、an(n为正整数)满足条件a1=an,a2=an-1,…,an=a1,即ak=an-k+1(k=1,2 …,n),我们称其为“对称数列”.设{bn}是项数为7的“对称数列”,其中b1、b2、b3、b4成等差数列,且b1=2,b2+b4=16,依次写出{bn}的每一项______.
题型:不详难度:| 查看答案
已知等差数列{an}满足a2=3,an-1=17,(n≥2),Sn=100,则n的值为(  )
A.8B.9C.10D.11
题型:黑龙江一模难度:| 查看答案
等差数列{an}中,a1、a2、a3分别是下表第一、二、三列中的某个数,且a1、a2、a3中的任何两个数不在下表的同一行.
题型:即墨市模拟难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
第一列第二列第三列
第一行02-1
第二行205
第三行13-3
首项为a1,公差为d的等差数列{an}的前n项和为Sn.已知a7=-2,S5=30.
(1) 求a1及d;
(2) 若数列{bn}满足an=
b1+2b2+3b3+…+nbn
n
(n∈N*),求数列{bn}的通项公式.