当前位置:高中试题 > 数学试题 > 等差数列 > 已知点(n,an)(n∈N*)在函数f(x)=-2x-2的图象上,数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,且Tn是6Sn与8n的等差中项.(...
题目
题型:东城区模拟难度:来源:
已知点(n,an)(n∈N*)在函数f(x)=-2x-2的图象上,数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,且Tn是6Sn与8n的等差中项.
(1)求数列{bn}的通项公式;
(2)设cn=bn+8n+3,数列{dn}满足d1=c1dn+1=cdn(n∈N*).求数列{dn}的前n项和Dn
(3)设g(x)是定义在正整数集上的函数,对于任意的正整数x1,x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a为常数,a≠0),试判断数列{
g(
dn+1
2
)
dn+1
}
是否为等差数列,并说明理由.
答案
(Ⅰ)依题意得an=-2n-2,故a1=-4.
又2Tn=6Sn+8n,即Tn=3Sn+4n,
∴当n≥2时,bn=Tn-Tn-1=3(Sn-Sn-1)+4=3an+4=-6n-2.
又b1=T1=3S1+4=3a1+4=-8,也适合上式,
∴bn=-6n-2(n∈N*).
(Ⅱ)∵cn=bn+8n+3=-6n-2+8n+3=2n+1(n∈N*),
dn+1=cdn=2dn+1,
因此dn+1+1=2(dn+1)(n∈N*).
由于d1=c1=3,
∴{dn+1}是首项为d1+1=4,公比为2的等比数列.
故dn+1=4×2n-1=2n+1
∴dn=2n+1-1.
Dn=(22+23++2n+1)-n=
4(2n-1)
2-1
-n=2n+2-n-4

(Ⅲ)g(
dn+1
2
)=g(2n)=2n-1g(2)+2g(2n-1)

g(
dn+1
2
)
dn+1
=
g(2n)
2n+1
=
2n-1g(2)+2g(2n-1)
2n+1
=
a
4
+
g(2n-1)
2n
=
a
4
+
g(
dn-1+1
2
)
dn-1+1

g(
dn+1
2
)
dn+1
-
g(
dn-1+1
2
)
dn-1+1
=
a
4

因为已知a为常数,则数列{
g(
dn+1
2
)
dn+1
}
是等差数列.
核心考点
试题【已知点(n,an)(n∈N*)在函数f(x)=-2x-2的图象上,数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,且Tn是6Sn与8n的等差中项.(】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
在等差数列{an}中,a3,a8是方程x2-3x-5=0的两个根,则S10是(  )
A.15B.30C.50D.15+12


29
题型:不详难度:| 查看答案
已知数列{an},an∈N*,前n项和Sn=
1
8
(an+2)2
(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30,求数列{bn}的前n项和的最小值.
题型:不详难度:| 查看答案
已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列
(1)若an=3n+1,是否存在m,n∈N*,有am+am+1=ak?请说明理由;
(2)若bn=aqn(a、q为常数,且aq≠0)对任意m存在k,有bm•bm+1=bk,试求a、q满足的充要条件;
(3)若an=2n+1,bn=3n试确定所有的p,使数列{bn}中存在某个连续p项的和式数列中{an}的一项,请证明.
题型:上海难度:| 查看答案
设{Sn}是等差数列{an}的前n项和,若
S8
S4
=3
,则
S16
S8
=(  )
A.
4
3
B.
10
3
C.
9
5
D.3
题型:不详难度:| 查看答案
凸n边形各内角成等差数列,公差d=10°,最小内角为100°,则n=(  )
A.5或6B.9C.8D.8或9
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.