当前位置:高中试题 > 数学试题 > 等差数列 > 设数列{an}的各项均为正数,前n项和为Sn,已知4Sn=a2n+2an+1(n∈N*)(1)证明数列{an}是等差数列,并求其通项公式;(2)是否存在k∈N*...
题目
题型:闵行区一模难度:来源:
设数列{an}的各项均为正数,前n项和为Sn,已知4Sn=
a2n
+2an+1(n∈N*)

(1)证明数列{an}是等差数列,并求其通项公式;
(2)是否存在k∈N*,使得Sk2=
a2k+2048
,若存在,求出k的值;若不存在请说明理由;
(3)证明:对任意m、k、p∈N*,m+p=2k,都有
1
Sm
+
1
Sp
2
Sk
答案
(1)∵4Sn=
a2n
+2an+1

∴当n≥2时,4Sn-1=
a2n-1
+2an-1+1

两式相减得4an=
a2n
-
a2n-1
+2an-2an-1

∴(an+an-1)(an-an-1-2)=0
∵an>0,∴an-an-1=2,
4S1=
a21
+2a1+1
,∴a1=1
∴{an}是以a1=1为首项,d=2为公差的等差数列. 
∴an=a1+(n-1)d=2n-1;
(2)由(1)知Sn=
(1+2n-1)n
2
=n2

假设正整数k满足条件,
则(k22=[2(k+2048)-1]2
∴k2=2(k+2048)-1,
解得k=65;                         
(3)证明:由Sn=n2得:Sm=m2Sk=k2Sp=p2
于是
1
Sm
+
1
Sp
-
2
Sk
=
1
m2
+
1
p2
-
2
k2
=
k2(p2+m2)-2m2p2
m2p2k2

∵m、k、p∈N*,m+p=2k,
k2(p2+m2)-2m2p2
m2p2k2

=
(
m+p
2
)
2
(p2+m2)-2m2p2
m2p2k2
mp×2pm-2m2p2
m2p2k2
=0

1
Sm
+
1
Sp
2
Sk
核心考点
试题【设数列{an}的各项均为正数,前n项和为Sn,已知4Sn=a2n+2an+1(n∈N*)(1)证明数列{an}是等差数列,并求其通项公式;(2)是否存在k∈N*】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
在数列{an}中,a1=2,an+1=1-an(n∈N ),Sn为数列的前n项和,则S2006-2S2007+S2008为(  )
A.5B.-1C.-3D.2
题型:不详难度:| 查看答案
设抛物线C:y2=2px(p>0)的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若p=2,求线段AF中点M的轨迹方程;
(2)若直线AB的方向向量为


n
=(1,2)
,当焦点为F(
1
2
,0)
时,求△OAB的面积;
(3)若M是抛物线C准线上的点,求证:直线MA、MF、MB的斜率成等差数列.
题型:宝山区一模难度:| 查看答案
已知数列{an}的前n项和为Sn,且an=
1
2
(3n+Sn)对一切正整数n成立
(1)求出:a1,a2,a3的值
(2)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;
(3)设bn=
n
3
an,求数列{bn}的前n项和Bn;数列{an}中是否存在构成等差数列的四项?若存在求出一组;否则说明理由.
题型:南开区二模难度:| 查看答案
设数列{an}的前n项和为Sn,且Sn=(m+1)-man对于任意的正整数n都成立,其中m为常数,且m<-1.
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足:b1=
1
3
a1
,bn=f(bn-1)(n≥2,n∈N),求证:数列{
1
bn
}是等差数列,并求数列{bnbn+1}的前n项和.
题型:不详难度:| 查看答案
已知数列{an}满足 a1=2,a2=8,an+2=4an+1-4an
(1)证明{an+1-2an}是等比数列;
(2)证明{
an
2n
}
是等差数列;
(3)设S=a1+a2+a3+…+a2010,求S的值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.