当前位置:高中试题 > 数学试题 > 等差数列 > (本小题满分16分)已知数列是各项均为正数的等差数列.(1)若,且,,成等比数列,求数列的通项公式;(2)在(1)的条件下,数列的前和为,设,若对任意的,不等式...
题目
题型:不详难度:来源:
(本小题满分16分)
已知数列是各项均为正数的等差数列.
(1)若,且成等比数列,求数列的通项公式
(2)在(1)的条件下,数列的前和为,设,若对任意的,不等式恒成立,求实数的最小值;
(3)若数列中有两项可以表示为某个整数的不同次幂,求证:数列 中存在无穷多项构成等比数列.
答案
(1)的通项公式.(2)实数的最小值为
(3)有等比数列,其中.   
解析
本试题主要是考查了数列的通项公式和数列求和的综合运用。
(1)因为因为 又因为是正项等差数列,故,利用等差数列的某两项可知其通项公式的求解。
(2)因为,可知其的通项公式,利用裂项求和的思想得到结论。
(3)因为这个数列的所有项都是正数,并且不相等,所以
其中 是数列的项,是大于1的整数,
分析证明。
(1)因为 又因为是正项等差数列,故
所以,得(舍去) ,
所以数列的通项公式.………………………………………………4分
(2) 因为


  
,则, 当时,恒成立,
所以上是增函数,故当时,,即当时,, 要使对任意的正整数, 不等式恒成立,
则须使, 所以实数的最小值为.…………………………10分
(3)因为这个数列的所有项都是正数,并且不相等,所以
其中 是数列的项,是大于1的整数,
,则
的整数倍,对次幂
所以,右边是的整数倍.
所有这种形式是数列中某一项,
因此有等比数列,其中.   …………………………16分
核心考点
试题【(本小题满分16分)已知数列是各项均为正数的等差数列.(1)若,且,,成等比数列,求数列的通项公式;(2)在(1)的条件下,数列的前和为,设,若对任意的,不等式】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
(本题满分14分)已知等差数列的前项和为,等比数列的前项和为,它们满足,,,且当时,取得最小值.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,如果是单调数列,求实数的取值范围.
题型:不详难度:| 查看答案
(本小题满分14分)
已知正项数列的首项,前项和满足
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列的前项和为,求证:
题型:不详难度:| 查看答案
(本小题满分14分)已知数列{an}是以d为公差的等差数列,数列{bn}是以q为公比的等比数列
(Ⅰ)若数列{bn}的前n项和为Sn,且a1=b1=d=2,S3<5b2+a88-180,求整数q的值
(Ⅱ)在(Ⅰ)的条件下,试问数列{bn}中是否存在一项bk,使得b,k恰好可以表示为该数列中连续P(P∈N,P≥2)项和?请说明理由。
(Ⅲ)若b1=ar,b2=as≠ar, b3=at(其中t>s>r,且(s—r)是(t—r)的约数)求证:数列{bn}中每一项都是数列{an}中的项.
题型:不详难度:| 查看答案
(本小题满分12分)
在各项均为正数的等比数列中, 已知, 且,,成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和
题型:不详难度:| 查看答案
各项为正数的数列,其前项的和为,且,则        
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.