当前位置:高中试题 > 数学试题 > 等差数列 > 已知各项均不相等的等差数列{an}的前n项和为Sn,若S3=15,且a3+1为a1+1和a7+1的等比中项.(1)求数列{an}的通项公式与前n项和Sn;(2)...
题目
题型:不详难度:来源:
已知各项均不相等的等差数列{an}的前n项和为Sn,若S3=15,且a3+1为a1+1和a7+1的等比中项.
(1)求数列{an}的通项公式与前n项和Sn
(2)设Tn为数列{}的前n项和,问是否存在常数m,使Tn=m[],若存在,求m的值;若不存在,说明理由.
答案
(1)an=2n+1      Sn=n(n+2)
(2)数m=,见解析
解析
解:(1)设数列{an}的公差为d,由已知,可得
S3=a1+a2+a3=15,得a2=a1+d=5,
由a3+1为a1+1和a7+1的等比中项,
可得(6+d)2=(6-d)×(6+5d),化简得d2-2d=0,
解得d=0(不合题意,舍去)或d=2,
当d=2时,a1=3,其通项公式为an=3+(n-1)×2=2n+1,前n项和Sn=n(n+2).
(2)由(1)知数列{an}的前n项和为Sn=n(n+2),
则有 (),
Tn (1-+…+)= (1+)= [].
故存在常数m=,使得Tn=m[]成立.
核心考点
试题【已知各项均不相等的等差数列{an}的前n项和为Sn,若S3=15,且a3+1为a1+1和a7+1的等比中项.(1)求数列{an}的通项公式与前n项和Sn;(2)】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
设数列{an}中,若an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”,已知数列{bn}为“凸数列”,且b1=1,b2=-2,则数列{bn}的前2014项和为________.
题型:不详难度:| 查看答案
已知等比数列{an}中,各项均为正数,且a6·a10+a3·a5=26,a5·a7=5,则a4+a8=(  )
A.4B.5C.6D.7

题型:不详难度:| 查看答案
在公差不为零的等差数列{an}中,2a3-a+2a11=0,数列{bn}是等比数列,且b7=a7,则log2(b6b8)的值为(  )
A.2B.4C.8D.16

题型:不详难度:| 查看答案
设等差数列的公差为d,若数列为递减数列,则(  )
A.B.C.D.

题型:不详难度:| 查看答案
已知数列满足.若为等比数列,且
(1)求
(2)设。记数列的前项和为.
(i)求
(ii)求正整数,使得对任意,均有
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.