当前位置:高中试题 > 数学试题 > 等差数列 > 在数列{}中,,并且对任意都有成立,令.(Ⅰ)求数列{}的通项公式;(Ⅱ)设数列{}的前n项和为,证明:...
题目
题型:不详难度:来源:
在数列{}中,,并且对任意都有成立,令
(Ⅰ)求数列{}的通项公式;
(Ⅱ)设数列{}的前n项和为,证明:
答案
(Ⅰ)
(Ⅱ)见解析
解析

试题分析:(I)、当n=1时,先求出b1=3,当n≥2时,求得b n+1与bn的关系即可知道bn为等差数列,然后便可求出数列{bn}的通项公式;
(II)根据(I)中求得的bn的通项公式先求出数列{}的表达式,然后求出Tn的表达式,根据不等式的性质即可证明<Tn
解:(Ⅰ)当n=1时,,当时,
所以------------4分
所以数列是首项为3,公差为1的等差数列,
所以数列的通项公式为-------------5分
(Ⅱ)------------------------------------7分
-------------------11分

可知Tn是关于变量n的增函数,当n趋近无穷大时,的值趋近于0,
当n=1时Tn取最小值,故有----------------14分
点评:解决该试题的关键是运用整体的思想来表示出递推关系,然后进而利用函数的单调性的思想来放缩得到证明。
核心考点
试题【在数列{}中,,并且对任意都有成立,令.(Ⅰ)求数列{}的通项公式;(Ⅱ)设数列{}的前n项和为,证明:】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,为数列的前n项和.
(1)求数列的通项公式和数列的前n项和
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
若数列满足,则__________
题型:不详难度:| 查看答案
某市环保局为增加城市的綠地面积,提出两个投资方案:方案A为一次性投资100万元;方案B为第一年投资10 万元,以后每年都比前一年增加10万元。则按照方案B经过多少年后,总投入不少于方案A的投入。答曰:(     )
A.4B.5 C.9D.10

题型:不详难度:| 查看答案
设等差数列的前n项和为已知         
题型:不详难度:| 查看答案
(本题满分14分)
在等差数列中,已知
(Ⅰ)求通项和前n项和
(Ⅱ)求的最大值以及取得最大值时的序号的值;
(Ⅲ)求数列的前n项和.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.