当前位置:高中试题 > 数学试题 > 数列的概念与表示方法 > 已知数列{an}的前n项和为Sn,点(n,Snn)在直线y=12x+112上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和...
题目
题型:不详难度:来源:
已知数列{an}的前n项和为Sn,点(n,
Sn
n
)在直线y=
1
2
x+
11
2
上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
3
(2an-11)(2bn-1)
,数列{cn}的前n项和为Tn,求Tn及使不等式Tn
k
2012
对一切n都成立的最小正整数k的值;
(3)设f(n)=





an(n=2l-1,l∈N*)
bn(n=2l,n∈N*)
问是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值; 若不存在,请说明理由.
答案
(1)由题意,得
Sn
n
=
1
2
n+
11
2
,即Sn=
1
2
n2+
11
2
n.
故当n≥2时,an=Sn-Sn-1=(
1
2
n2+
11
2
n)-[
1
2
(n-1)2+
11
2
(n-1)]=n+5.
n=1时,a1=S1=6,而当n=1时,n+5=6,
所以an=n+5(n∈N*);
又bn+2-2bn+1+bn=0,即bn+2-bn+1=bn+1-bn (n∈N*),
所以{bn}为等差数列,于是
9(b3+b7)
2
=153.
而b3=11,故b7=23,则公差d=
23-11
7-3
=3,
因此,bn=b3+3(n-3)=3n+2,即bn=3n+2(n∈N*).
(2)cn=
3
(2an-11)(2bn-1)

=
3
[2(n+5)-11][2(3n+2)-1]

=
1
(2n+1)(2n-1)
=
1
2
(
1
2n-1
-
1
2n+1
)

所以,Tn=c1+c2+…+cn
=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)=
n
2n+1

易知Tn单调递增,由Tn
k
2012
得k>2012Tn,而Tn
1
2

故k≥1006,∴kmin=1006.
(3)f(n)=





n+5,(n=2l-1,l∈N*)
3n+2,(n=2l,l∈N*)

①当m为奇数时,m+15为偶数.
此时f(m+15)=3(m+15)+2=3m+47,5f(m)=5(m+5)=5m+25,
所以3m+47=5m+25,解得m=11.
②当m为偶数时,m+15为奇数.
此时f(m+15)=m+15+5=m+20,5f(m)=5(3m+2)=15m+10.
所以m+20=15m+10,解得m=
5
7
∉N*(舍去),
综上,存在唯一正整数m=11,使得f(m+15)=5f(m)成立;
核心考点
试题【已知数列{an}的前n项和为Sn,点(n,Snn)在直线y=12x+112上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和】;主要考察你对数列的概念与表示方法等知识点的理解。[详细]
举一反三
将正整数按下表的规律排列,把行与列交叉处的一个数称为某行某列的数,记作aij(i,j∈N*),如第二行第4列的数是15,记作a24=15,则有序数列(a82,a28)是______.
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
14516…
23615…
98714…
10111213…
数列{an}的通项公式为an=2n-49,Sn达到最小时,n等于______.
以下通项公式中,不是数列3,5,9,…,的通项公式的是(  )
A.an=2n+1B.an=n2-n+3
C.an=-
2
3
n
3
+5n2-
25
3
n+7
D.an=2n+1
已f(x)=
4x
x+4
,数列{an}满
1
an
=f(
1
an-1
)(n≥2),a1=1,则an=______.
数列1,-


2


3
,-2,…
的一个通项公式为an=______.