当前位置:高中试题 > 数学试题 > 指数函数图象及性质 > 已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使该角的顶点B落在矩形的边AD上,且折痕MN的两端点M、N分别位于边AB、BC上,...
题目
题型:解答题难度:一般来源:不详
已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使该角的顶点B落在矩形的边AD上,且折痕MN的两端点M、N分别位于边AB、BC上,设∠MNB=θ,MN=l.
(1)试将l表示成θ的函数;
(2)求l的最小值.
答案
(Ⅰ)由题设,如图所示,△NBM≌△NEM,∠MNB=θ,MN=l,
∴∠AEM=90°-2θ,则MB=lsinθ,AM=l•sinθsin(90°-2θ),
由题设得:AM+MB=lsinθ+l•sinθsin(90°-2θ)=6,
从而得l=
6
sinθ+sinθsin(90°-2θ)

即:l=
6
sinθ+sinθcos2θ
l=
3
sinθ•cos2θ






BN=
3
sinθcosθ
≤12
BM=
3
cos2θ
≤6
0<θ<
π
2
得:
π
12
≤θ≤
π
4

故:l表示成θ的函数为:l=
3
sinθ•cos2θ
,(
π
12
≤θ≤
π
4
).
(Ⅱ)设:sinθ=t则u=t(1-t2)=t-t3,即u=t-t3
π
12
≤θ≤
π
4
,u′=1-3t2令u′=0,得t=


3
3
t<


3
3
时,
u′>0,当t>


3
3
时,u′<0,所以当t=


3
3
时,
u取到最大值:


3
3
-
1
3


3
3
=
2


3
9

∴l的最小值为
3
2


3
9
=
9


3
2
核心考点
试题【已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使该角的顶点B落在矩形的边AD上,且折痕MN的两端点M、N分别位于边AB、BC上,】;主要考察你对指数函数图象及性质等知识点的理解。[详细]
举一反三
若函数f(x)=a-x(a>0,a≠1)是定义域为R的增函数,则函数f(x)=loga(x+1)的图象大致是(  )
A.B.
C.D.
题型:单选题难度:简单| 查看答案
如图,公园内有一块边长为2a的正三角形ABC空地,拟改建成花园,并在其中建一直道DE方便花园管理.设D、E分别在AB、AC上,且DE均分三角形ABC的面积.
(1)设AD=x(x≥a),DE=y,试将y表示为x的函数关系式;
(2)若DE是灌溉水管,为节约成本,希望其最短,DE的位置应在哪里?若DE是参观路线,希望其最长,DE的位置应在哪里?
题型:解答题难度:一般| 查看答案
某公司生产的A型商品通过租赁柜台进入某商场销售.第一年,商场为吸引厂家,决定免收该年管理费,因此,该年A型商品定价为每件70元,年销售量为11.8万件.第二年,商场开始对该商品征收比率为p%的管理费(即销售100元要征收p元),于是该商品的定价上升为每件
70
1-p%
元,预计年销售量将减少p万件.
(1)将第二年商场对该商品征收的管理费y(万元)表示成p的函数,并指出这个函数的定义域;
(2)要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p%的范围是多少?
(3)第二年,商场在所收管理费不少于14万元的前提下,要让厂家获得最大销售金额,则p应为多少?
题型:解答题难度:一般| 查看答案
函数y=(
1
2
)x2+2x
的单调增区间为(  )
A.[-1,+∞)B.(-∞,-1]C.(-∞,+∞)D.(-∞,0]
题型:单选题难度:简单| 查看答案
甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P(元)与时间t(天)函数关系如图(一)所示,该商品日销售量Q(件)与时间t(天)函数关系如图(二)所示.

①写出图(一)表示的销售价格与时间的函数关系式P=f(t),写出图(二)表示的日销售量与时间的函数关系式Q=g(t),及日销售金额M(元)与时间的函数关系M=h(t).
②乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N(元)与时间t(天)之间的函数关系为N=-2t2-10t+2750,比较4月份每天两商店销售金额的大小.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.