当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM与于点D,交BN于点C,F是CD的中点,连接OF.(1)求证:OD∥BE;(2)猜想:...
题目
题型:不详难度:来源:
如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM与于点D,交BN于点C,F是CD的中点,连接OF.
(1)求证:ODBE;
(2)猜想:OF与CD有何数量关系?并说明理由.
答案
(1)证明:连接OE,
∵AM、DE是⊙O的切线,
∴DA=DE,∠OAD=∠OED=90°,
又∵OD=OD,
在△AOD和△EOD中,





DA=DE
OD=OD

∴△AOD≌△EOD,
∴∠AOD=∠EOD=
1
2
∠AOE,
∵∠ABE=
1
2
∠AOE,
∴∠AOD=∠ABE,
∴ODBE;

(2)OF=
1
2
CD.
理由:连接OC,
∵BC、CE是⊙O的切线,
∴∠OCB=∠OCF,
∵AMBN,
∴∠ADO+∠EDO+∠OCB+∠OCE=180°,
由(1)得∠ADO=∠EDO,
∴2∠EDO+2∠OCE=180°,
即∠EDO+∠OCE=90°,
在Rt△DOC中,
∵F是DC的中点,
∴OF=
1
2
CD.
核心考点
试题【如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM与于点D,交BN于点C,F是CD的中点,连接OF.(1)求证:OD∥BE;(2)猜想:】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧CBA上一点(不与A、C重合)
(1)求∠APC与∠ACD的度数;
(2)当点P移动到弧CB的中点时,四边形OBPC是什么特殊的四边形,说明理由.
题型:不详难度:| 查看答案
在△ABC中,∠C=90°,AC=3cm,BC=4cm,扇形ODF与BC边相切,切点是E,若FO⊥AB于点O.则扇形的半径为______.
题型:不详难度:| 查看答案
如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=


2
,BC=2,求⊙O的半径.
题型:不详难度:| 查看答案
如图,已知:AB是⊙O的直径,BC、CD分别是⊙O的切线,切点分别为B、D,E是BA和CD的延长线的交点.
(1)猜想AD与OC的位置关系,并加以证明;
(2)设AD•OC的积为S,⊙O的半径为r,试探究S与r的关系;
(3)当r=2,sin∠E=
1
3
时,求AD和OC的值.
题型:不详难度:| 查看答案
如图,⊙O的直径AB=18,AC和BD是它的两条切线,CD与⊙O相切于E,且与AC、BD相交于点C、D,设
AC=x,BD=y,试求xy的值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.