当前位置:高中试题 > 数学试题 > 指数函数图象及性质 > (本小题满分分)已知函数(,是不同时为零的常数).(1)当时,若不等式对任意恒成立,求实数的取值范围;(2)求证:函数在内至少存在一个零点....
题目
题型:解答题难度:简单来源:不详
(本小题满分分)已知函数是不同时为零的常数).
(1)当时,若不等式对任意恒成立,求实数的取值范围;
(2)求证:函数内至少存在一个零点.
答案
(1)(2)时易证结论;时,利用函数的零点存在定理可以证明结论成立.
解析

试题分析:(1)当时,
由不等式对任意恒成立,
,解得.                                     ……5分
(2)证明:当时,因为不同时为零,所以
所以的零点为,                               ……6分
时,二次函数的对称轴方程为,    ……7分
①若时,

∴函数内至少存在一个零点.                            ……10分
②若时,

∴函数内至少存在一个零点.                       ……13分
综上得:函数内至少存在一个零点.                    ……14分
点评:恒成立问题,一般转化为最值问题解决,而函数的零点存在定理能确定一定存在零点,但是确定不了存在几个零点.
核心考点
试题【(本小题满分分)已知函数(,是不同时为零的常数).(1)当时,若不等式对任意恒成立,求实数的取值范围;(2)求证:函数在内至少存在一个零点.】;主要考察你对指数函数图象及性质等知识点的理解。[详细]
举一反三
(本题满分13分)设函数,且,求证:(1)
(2)函数在区间内至少有一个零点;
(3)设是函数的两个零点,则.
题型:解答题难度:简单| 查看答案
(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.
题型:解答题难度:简单| 查看答案
设定义在上的函数是最小正周期为的偶函数,当时,,且在上单调递减,在上单调递增,则函数上的零点个数为         
题型:填空题难度:简单| 查看答案
,定义,则函数是(   )
A.奇函数但非偶函数;B.偶函数但非奇函数;
C.既是奇函数又是偶函数;D.非奇非偶函数

题型:单选题难度:简单| 查看答案
已知函数是增函数,在(0,1)为减函数.
(I)求的表达式;
(II)求证:当时,方程有唯一解;
(Ⅲ)当时,若内恒成立,求的取值范围.
题型:解答题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.