当前位置:高中试题 > 数学试题 > 函数的零点 > 如果关于x的方程[(12)|x|-2]2-a-2=0有实数根,则a的取值范围是(  )A.[-2,+∞)B.(-1,2]C.(-2,1]D.[-1,2)...
题目
题型:单选题难度:一般来源:不详
如果关于x的方程[(
1
2
)|x|-2]2-a-2=0
有实数根,则a的取值范围是(  )
A.[-2,+∞)B.(-1,2]C.(-2,1]D.[-1,2)
答案
令f(x)=[(
1
2
)
|x|
-2]
2
-2

则∵0<(
1
2
)
|x|
 
≤1
∴-2<(
1
2
)
|x|
 
-2≤-1
则1≤[(
1
2
)
|x|
-2]
2
<4
故f(x)∈[-1,2)
故方程[(
1
2
)|x|-2]2-a-2=0
有实数根,
a∈[-1,2)
故选D
核心考点
试题【如果关于x的方程[(12)|x|-2]2-a-2=0有实数根,则a的取值范围是(  )A.[-2,+∞)B.(-1,2]C.(-2,1]D.[-1,2)】;主要考察你对函数的零点等知识点的理解。[详细]
举一反三
已知函数f(x)=ex,x∈R.
(Ⅰ) 求f(x)的反函数的图象上的点(1,0)处的切线方程;
(Ⅱ) 证明:曲线y=f(x)与曲线y=
1
2
x
2
+x+1
有唯一公共点.
(Ⅲ) 设a<b,比较f(
a+b
2
)与
f(b)-f(a)
b-a
的大小,并说明理由.
题型:解答题难度:一般| 查看答案
已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(
π
4
,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个
π
2
单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式
(2)是否存在x0∈(
π
6
π
4
),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;
(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.
题型:解答题难度:一般| 查看答案
方程2x=8的解是______.
题型:填空题难度:一般| 查看答案
设函数f(x)=x3-4x+a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则(  )
A.x1>-1B.x2<0C.x2>0D.x3>2
题型:单选题难度:简单| 查看答案
设函数f(x)=a2x2(a>0).
(1)将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,写出y=φ(x)的解析式及值域;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.